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east; this was a weakly detected feature at 9 mm with the VLA
(Tobin et al. 2016b).

Finally, there is less prominent extended emission toward
NGC1333 IRAS2A and L1448IRS2. NGC1333 IRAS2A has
extended features at low surface brightness, and asymmetric
extended emission to the east. Then the extended emission for
L1448IRS2 is also more diffuse and does not have as well-
defined circumbinary structure like some of the others.
However, the larger structure surrounding the protostars may
be impacted by spatial filtering given that Tobin et al. (2015b)
detected a surrounding structure on larger scales in lower-
resolution data.

The Class I sources on the whole have little or no extended
emission surrounding the components of these multiple
systems. The images show this visually in Figure 2, and
Table 1 shows that the flux densities for the Gaussian fits and
the extended emission from a larger area encompassing the two
protostars are comparable. However, some show resolved
structure toward one component. Both NGC 1333 IRAS2B and
L1448 IRS1 have at least one component that is dominant, with
resolved structure in their dust emission. The other Class I

binaries appear consistent with point sources, and the
components have similar flux densities.
While the close companions were the primary targets, we

detected several wide companions in the observed fields. In the
field of SVS13A, we detected several additional sources. One
source is RAC1999 VLA20 (Rodríguez et al. 1999), located
northeast of SVS13A. This source was previously detected by
the VLA, but has no counterpart at shorter wavelengths (i.e.,
mid-infrared and far-infrared) and has been hypothesized to be
extragalactic (Tobin et al. 2016b), see Figure 3. The wider
companion to SVS13A, often called VLA3 or SVS13A2, was
detected (Figure 3), and appears marginally resolved. SVS13B
is also detected and resolved as shown in Figure 3). VLA 8mm
imaging of SVS13B indicated that it has a small embedded disk
(Segura-Cox et al. 2016), but a larger, resolved structure is
detected in the ALMA 1.3 mm data. We also detected L1448
IRS3A in the field of L1448 IRS3B (Figure 4). The small-scale
structure of L1448 IRS3A appears to be a resolved disk
(Figure 4), consistent with the resolved emission detected in
Tobin et al. (2015b). In the field of Per-emb-55 (Figure 5), we
also detected Per-emb-8 which appears to have a large

Figure 1. ALMA images of Class 0 multiple protostar systems in Perseus at 1.3 mm. The white or black crosses mark the VLA source positions in each image. A
1″scale bar is also drawn in each panel denoting 300 au. The beam of each image is drawn in the lower right corner, corresponding to approximately 0 27×0 17
(81 au×51 au). The noise level in each image is approximately 0.14 mJy beam−1, but this varies somewhat between sources depending on dynamic range limits. The
approximate outflow directions (when known) are drawn in the lower right corner with the red and blue arrow directions corresponding to the orientation of the
outflow. Note that the outflows apparently originate from the bright continuum peaks, but the arrows are drawn offset for clarity.

4

The Astrophysical Journal, 867:43 (32pp), 2018 November 1 Tobin et al.



Dust	dynamics	during	star	formaHon

• Two	methods	for	modelling	drag	force	between	gas	and	dust	with	SPH:	

• Two-fluid	method	(Laibe	&	Price	2012;	Ayliffe	et	al.	2012;	Loren-Aguilar	&	Bate	2014)	

• One-fluid	method	(Laibe	&	Price	2014a,b;	Price	&	Laibe	2015)	

• One-fluid	method	cannot	handle	large	grains	

• Two-fluid	prone	to	arHficial	clumping	and	resoluHon-dependent	over-dissipaHon	

Two-fluid	equaHons One-fluid	equaHons
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regions. Furthermore, for two fluid dust and gas mixtures at high
drag (small grains), Laibe & Price (2012) proved that it is necessary
that the gas resolve the ‘stopping length’ of the grains, l ∼ csts, to
correctly predict the dust dynamics (where cs is the sound speed
and ts the dust stopping time). The smallest grain simulations of
Hopkins & Lee (2016), equivalent to our molecular clouds with
0.3 µm grains, would require 16003 gas resolution elements. If this
spatial resolution requirement is not satisfied (as it was not in their
paper), then spuriously high dust concentrations are produced as
dust particles become trapped on scales below the gas resolution
length.

In this Letter, we investigate dynamical variations of the dust-
to-gas ratio in molecular clouds caused by the finite stopping time
of the dust grains using three-dimensional numerical calculations
of dust–gas mixtures in non-self-gravitating, turbulent molecular
clouds. Importantly, we use the single fluid dust/gas model of Laibe
& Price (2014a,b) and Price & Laibe (2015), which avoids the
spatial resolution requirement of dust tracer particles or a two-fluid
method. The one-fluid equations and our numerical method are
described in Section 2. Simulation results are presented in Section 3
and discussed in Section 4. We summarize in Section 5.

2 SIMULATION D ETAILS

2.1 Dust physics

We model the dust/gas fluid mixture as a single fluid, with each
element of fluid representing a combination of dust and gas (Laibe
& Price 2014a,b; Price & Laibe 2015). We solve the equations

dρ

dt
= −ρ(∇ · v), (1)

dv

dt
= −∇Pg

ρ
, (2)

dϵ

dt
= − 1

ρ
∇ · (ϵts∇Pg), (3)

where d/dt ≡ ∂/∂t + v · ∇ is the material derivative, Pg is the
thermodynamic gas pressure, ρ is the sum of gas and dust densities,
ρ = ρg + ρd, where subscripts g and d represent the gas and dust,
respectively, and ϵ ≡ ρd/ρ is the dust fraction. The mixture moves
at the barycentric velocity

v = ρgvg + ρdvd

ρg + ρd
. (4)

Gas and dust densities may be obtained according to ρg = (1 − ϵ)ρ
and ρd = ϵρ. This means the dust-to-gas ratio may be expressed
solely in terms of the dust fraction as ρd/ρg = ϵ/(1 − ϵ). Finally,
we adopt an isothermal equation of state

P = c2
s ρg = c2

s (1 − ϵ)ρ, (5)

where the back reaction of the dust on the gas modifies the sound
speed in the dust/gas mixture according to c̃s = cs(1 + ρd/ρg)−1/2.

Equations (1)–(3) make use of the ‘terminal velocity approxima-
tion’. This is valid when the stopping time of dust grains is short
compared to the dynamical time, occurring when the drag coeffi-
cient is large, i.e. when dust grains are small. We assume an Epstein
drag prescription, appropriate for small grains. Assuming compact,
spherical dust grains, the dust stopping time is

ts = ρgrainsgrain

(ρd + ρg)cs

√
πγ

8
, (6)

where ρgrain is the intrinsic density of the dust grains, sgrain is the
dust grain size, cs is the speed of sound and γ is the adiabatic index.
Expressed in a manner appropriate for molecular clouds, this is

ts = 3 × 103 yr
(

ρgrain

3 g cm−3

) (
sgrain

0.1 µm

)

×
(

cs

0.2 km s−1

)−1 (
ρ

10−20 g cm−3

)−1

. (7)

This time-scale is shorter than the dynamical time for all grain sizes
we consider, with the terminal velocity approximation becoming
marginal only in the lowest density gas for our largest grain size
(10 µm).

2.2 Numerical method

We use the PHANTOM smoothed particle hydrodynamics (SPH) code
(Price et al. 2017). Dust is modelled using the ‘one-fluid’ method of
Laibe & Price (2014a,b) and Price & Laibe (2015), which is accurate
and explicit for small dust grains (high drag) in the terminal veloc-
ity approximation. Our dust scheme exactly conserves gas, dust and
total mass, along with linear momentum, angular momentum and
energy to the accuracy of the time stepping. The scheme has been
extensively benchmarked against the analytic solutions for linear
waves and dusty shocks (Laibe & Price 2012, 2014b). Furthermore,
both the one- and two-fluid dust algorithms in PHANTOM have been
previously used to simulate dust in protoplanetary discs (e.g. Dip-
ierro et al. 2015; Ragusa et al. 2017). We have also used PHANTOM for
previous studies of supersonic turbulence in both hydrodynamics
and magnetohydrodynamics, including quantitative comparisons to
results obtained with the grid-based code FLASH (Price & Federrath
2010; Tricco, Price & Federrath 2016). Price et al. (2017) give full
details of the dust–gas algorithm, turbulence driving routine (Fed-
errath et al. 2010) and SPH algorithms in PHANTOM. This is the first
application of our one-fluid dust algorithm to molecular clouds.

2.3 Initial conditions

We assume a uniform, periodic box x, y, z ∈ [0, L] with L =
3 pc per side, adopting an isothermal sound speed cs = 0.2 km s−1

corresponding to a temperature of ≈11.5 K. The mean total density
(gas plus dust) is ρ0 = 10−20 g cm−3. For these calculations, the
maximum density produced by the turbulence is ≈10−17 g cm−3, so
it is reasonable to assume the gas remains isothermal. We neglect
the self-gravity of the mixture. Turbulence is initiated and sustained
at rms velocity Mach 10 (M = 10), with a corresponding turbulent
crossing time of τ = L/(2Mcs) ≈ 0.733 Myr. Dusty shocks at this
Mach number are expected to be of ‘J-type’, with a sharp jump in
the gas properties (Lehmann & Wardle 2016). Dust properties also
undergo a sharp jump since the stopping length is short. We evolve
the calculations for 20 dynamical times or about 14.66 Myr. This
may be longer than expected lifetimes for molecular clouds, but is
necessary to ensure statistically meaningful results.

We set the initial dust fraction assuming an initial dust-to-gas
mass ratio of 1 per cent everywhere. We assume an intrinsic density
of 3 g cm−3 for the dust grains, representing a combination of
carbonaceous (2.2 g cm−3) and silicate grains (3.5 g cm−3) (Draine
2003). Simulations were performed with 0.1, 1 and 10 µm sized
grains, with a separate simulation for each grain size.
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regions. Furthermore, for two fluid dust and gas mixtures at high
drag (small grains), Laibe & Price (2012) proved that it is necessary
that the gas resolve the ‘stopping length’ of the grains, l ∼ csts, to
correctly predict the dust dynamics (where cs is the sound speed
and ts the dust stopping time). The smallest grain simulations of
Hopkins & Lee (2016), equivalent to our molecular clouds with
0.3 µm grains, would require 16003 gas resolution elements. If this
spatial resolution requirement is not satisfied (as it was not in their
paper), then spuriously high dust concentrations are produced as
dust particles become trapped on scales below the gas resolution
length.

In this Letter, we investigate dynamical variations of the dust-
to-gas ratio in molecular clouds caused by the finite stopping time
of the dust grains using three-dimensional numerical calculations
of dust–gas mixtures in non-self-gravitating, turbulent molecular
clouds. Importantly, we use the single fluid dust/gas model of Laibe
& Price (2014a,b) and Price & Laibe (2015), which avoids the
spatial resolution requirement of dust tracer particles or a two-fluid
method. The one-fluid equations and our numerical method are
described in Section 2. Simulation results are presented in Section 3
and discussed in Section 4. We summarize in Section 5.

2 SIMULATION D ETAILS

2.1 Dust physics

We model the dust/gas fluid mixture as a single fluid, with each
element of fluid representing a combination of dust and gas (Laibe
& Price 2014a,b; Price & Laibe 2015). We solve the equations
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dt
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where d/dt ≡ ∂/∂t + v · ∇ is the material derivative, Pg is the
thermodynamic gas pressure, ρ is the sum of gas and dust densities,
ρ = ρg + ρd, where subscripts g and d represent the gas and dust,
respectively, and ϵ ≡ ρd/ρ is the dust fraction. The mixture moves
at the barycentric velocity

v = ρgvg + ρdvd

ρg + ρd
. (4)

Gas and dust densities may be obtained according to ρg = (1 − ϵ)ρ
and ρd = ϵρ. This means the dust-to-gas ratio may be expressed
solely in terms of the dust fraction as ρd/ρg = ϵ/(1 − ϵ). Finally,
we adopt an isothermal equation of state

P = c2
s ρg = c2

s (1 − ϵ)ρ, (5)

where the back reaction of the dust on the gas modifies the sound
speed in the dust/gas mixture according to c̃s = cs(1 + ρd/ρg)−1/2.

Equations (1)–(3) make use of the ‘terminal velocity approxima-
tion’. This is valid when the stopping time of dust grains is short
compared to the dynamical time, occurring when the drag coeffi-
cient is large, i.e. when dust grains are small. We assume an Epstein
drag prescription, appropriate for small grains. Assuming compact,
spherical dust grains, the dust stopping time is

ts = ρgrainsgrain

(ρd + ρg)cs

√
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8
, (6)

where ρgrain is the intrinsic density of the dust grains, sgrain is the
dust grain size, cs is the speed of sound and γ is the adiabatic index.
Expressed in a manner appropriate for molecular clouds, this is

ts = 3 × 103 yr
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sgrain
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×
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)−1 (
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)−1

. (7)

This time-scale is shorter than the dynamical time for all grain sizes
we consider, with the terminal velocity approximation becoming
marginal only in the lowest density gas for our largest grain size
(10 µm).

2.2 Numerical method

We use the PHANTOM smoothed particle hydrodynamics (SPH) code
(Price et al. 2017). Dust is modelled using the ‘one-fluid’ method of
Laibe & Price (2014a,b) and Price & Laibe (2015), which is accurate
and explicit for small dust grains (high drag) in the terminal veloc-
ity approximation. Our dust scheme exactly conserves gas, dust and
total mass, along with linear momentum, angular momentum and
energy to the accuracy of the time stepping. The scheme has been
extensively benchmarked against the analytic solutions for linear
waves and dusty shocks (Laibe & Price 2012, 2014b). Furthermore,
both the one- and two-fluid dust algorithms in PHANTOM have been
previously used to simulate dust in protoplanetary discs (e.g. Dip-
ierro et al. 2015; Ragusa et al. 2017). We have also used PHANTOM for
previous studies of supersonic turbulence in both hydrodynamics
and magnetohydrodynamics, including quantitative comparisons to
results obtained with the grid-based code FLASH (Price & Federrath
2010; Tricco, Price & Federrath 2016). Price et al. (2017) give full
details of the dust–gas algorithm, turbulence driving routine (Fed-
errath et al. 2010) and SPH algorithms in PHANTOM. This is the first
application of our one-fluid dust algorithm to molecular clouds.

2.3 Initial conditions

We assume a uniform, periodic box x, y, z ∈ [0, L] with L =
3 pc per side, adopting an isothermal sound speed cs = 0.2 km s−1

corresponding to a temperature of ≈11.5 K. The mean total density
(gas plus dust) is ρ0 = 10−20 g cm−3. For these calculations, the
maximum density produced by the turbulence is ≈10−17 g cm−3, so
it is reasonable to assume the gas remains isothermal. We neglect
the self-gravity of the mixture. Turbulence is initiated and sustained
at rms velocity Mach 10 (M = 10), with a corresponding turbulent
crossing time of τ = L/(2Mcs) ≈ 0.733 Myr. Dusty shocks at this
Mach number are expected to be of ‘J-type’, with a sharp jump in
the gas properties (Lehmann & Wardle 2016). Dust properties also
undergo a sharp jump since the stopping length is short. We evolve
the calculations for 20 dynamical times or about 14.66 Myr. This
may be longer than expected lifetimes for molecular clouds, but is
necessary to ensure statistically meaningful results.

We set the initial dust fraction assuming an initial dust-to-gas
mass ratio of 1 per cent everywhere. We assume an intrinsic density
of 3 g cm−3 for the dust grains, representing a combination of
carbonaceous (2.2 g cm−3) and silicate grains (3.5 g cm−3) (Draine
2003). Simulations were performed with 0.1, 1 and 10 µm sized
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regions. Furthermore, for two fluid dust and gas mixtures at high
drag (small grains), Laibe & Price (2012) proved that it is necessary
that the gas resolve the ‘stopping length’ of the grains, l ∼ csts, to
correctly predict the dust dynamics (where cs is the sound speed
and ts the dust stopping time). The smallest grain simulations of
Hopkins & Lee (2016), equivalent to our molecular clouds with
0.3 µm grains, would require 16003 gas resolution elements. If this
spatial resolution requirement is not satisfied (as it was not in their
paper), then spuriously high dust concentrations are produced as
dust particles become trapped on scales below the gas resolution
length.

In this Letter, we investigate dynamical variations of the dust-
to-gas ratio in molecular clouds caused by the finite stopping time
of the dust grains using three-dimensional numerical calculations
of dust–gas mixtures in non-self-gravitating, turbulent molecular
clouds. Importantly, we use the single fluid dust/gas model of Laibe
& Price (2014a,b) and Price & Laibe (2015), which avoids the
spatial resolution requirement of dust tracer particles or a two-fluid
method. The one-fluid equations and our numerical method are
described in Section 2. Simulation results are presented in Section 3
and discussed in Section 4. We summarize in Section 5.

2 SIMULATION D ETAILS

2.1 Dust physics

We model the dust/gas fluid mixture as a single fluid, with each
element of fluid representing a combination of dust and gas (Laibe
& Price 2014a,b; Price & Laibe 2015). We solve the equations

dρ

dt
= −ρ(∇ · v), (1)

dv
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= −∇Pg

ρ
, (2)

dϵ

dt
= − 1

ρ
∇ · (ϵts∇Pg), (3)

where d/dt ≡ ∂/∂t + v · ∇ is the material derivative, Pg is the
thermodynamic gas pressure, ρ is the sum of gas and dust densities,
ρ = ρg + ρd, where subscripts g and d represent the gas and dust,
respectively, and ϵ ≡ ρd/ρ is the dust fraction. The mixture moves
at the barycentric velocity

v = ρgvg + ρdvd

ρg + ρd
. (4)

Gas and dust densities may be obtained according to ρg = (1 − ϵ)ρ
and ρd = ϵρ. This means the dust-to-gas ratio may be expressed
solely in terms of the dust fraction as ρd/ρg = ϵ/(1 − ϵ). Finally,
we adopt an isothermal equation of state

P = c2
s ρg = c2

s (1 − ϵ)ρ, (5)

where the back reaction of the dust on the gas modifies the sound
speed in the dust/gas mixture according to c̃s = cs(1 + ρd/ρg)−1/2.

Equations (1)–(3) make use of the ‘terminal velocity approxima-
tion’. This is valid when the stopping time of dust grains is short
compared to the dynamical time, occurring when the drag coeffi-
cient is large, i.e. when dust grains are small. We assume an Epstein
drag prescription, appropriate for small grains. Assuming compact,
spherical dust grains, the dust stopping time is

ts = ρgrainsgrain

(ρd + ρg)cs

√
πγ

8
, (6)

where ρgrain is the intrinsic density of the dust grains, sgrain is the
dust grain size, cs is the speed of sound and γ is the adiabatic index.
Expressed in a manner appropriate for molecular clouds, this is

ts = 3 × 103 yr
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3 g cm−3
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sgrain
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)

×
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0.2 km s−1

)−1 (
ρ

10−20 g cm−3

)−1

. (7)

This time-scale is shorter than the dynamical time for all grain sizes
we consider, with the terminal velocity approximation becoming
marginal only in the lowest density gas for our largest grain size
(10 µm).

2.2 Numerical method

We use the PHANTOM smoothed particle hydrodynamics (SPH) code
(Price et al. 2017). Dust is modelled using the ‘one-fluid’ method of
Laibe & Price (2014a,b) and Price & Laibe (2015), which is accurate
and explicit for small dust grains (high drag) in the terminal veloc-
ity approximation. Our dust scheme exactly conserves gas, dust and
total mass, along with linear momentum, angular momentum and
energy to the accuracy of the time stepping. The scheme has been
extensively benchmarked against the analytic solutions for linear
waves and dusty shocks (Laibe & Price 2012, 2014b). Furthermore,
both the one- and two-fluid dust algorithms in PHANTOM have been
previously used to simulate dust in protoplanetary discs (e.g. Dip-
ierro et al. 2015; Ragusa et al. 2017). We have also used PHANTOM for
previous studies of supersonic turbulence in both hydrodynamics
and magnetohydrodynamics, including quantitative comparisons to
results obtained with the grid-based code FLASH (Price & Federrath
2010; Tricco, Price & Federrath 2016). Price et al. (2017) give full
details of the dust–gas algorithm, turbulence driving routine (Fed-
errath et al. 2010) and SPH algorithms in PHANTOM. This is the first
application of our one-fluid dust algorithm to molecular clouds.

2.3 Initial conditions

We assume a uniform, periodic box x, y, z ∈ [0, L] with L =
3 pc per side, adopting an isothermal sound speed cs = 0.2 km s−1

corresponding to a temperature of ≈11.5 K. The mean total density
(gas plus dust) is ρ0 = 10−20 g cm−3. For these calculations, the
maximum density produced by the turbulence is ≈10−17 g cm−3, so
it is reasonable to assume the gas remains isothermal. We neglect
the self-gravity of the mixture. Turbulence is initiated and sustained
at rms velocity Mach 10 (M = 10), with a corresponding turbulent
crossing time of τ = L/(2Mcs) ≈ 0.733 Myr. Dusty shocks at this
Mach number are expected to be of ‘J-type’, with a sharp jump in
the gas properties (Lehmann & Wardle 2016). Dust properties also
undergo a sharp jump since the stopping length is short. We evolve
the calculations for 20 dynamical times or about 14.66 Myr. This
may be longer than expected lifetimes for molecular clouds, but is
necessary to ensure statistically meaningful results.

We set the initial dust fraction assuming an initial dust-to-gas
mass ratio of 1 per cent everywhere. We assume an intrinsic density
of 3 g cm−3 for the dust grains, representing a combination of
carbonaceous (2.2 g cm−3) and silicate grains (3.5 g cm−3) (Draine
2003). Simulations were performed with 0.1, 1 and 10 µm sized
grains, with a separate simulation for each grain size.
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treatment of the drag terms) in Monaghan (1997) and applied in
an astrophysical context to the dynamics of dust grains in proto-
planetary discs (Maddison, Humble & Murray 2003; Rice et al.
2004; Barrière-Fouchet et al. 2005). The particle-based nature of
the SPH formalism means that the addition of a dusty fluid is nat-
ural. More importantly, the drag term that couples the two phases
can be implemented such that the total linear and angular momenta
of the system are exactly (and simultaneously) conserved, in line
with the Hamiltonian and exactly conservative nature of the core
SPH method (e.g. Price 2011).

However, the standard methods for treating dusty gas in SPH
were developed over 15 years ago and our initial attempts to sim-
ply apply the existing formulations uncovered several issues that
needed to be addressed. Specifically, (1) the original formulations
assumed a spatially constant SPH smoothing length; (2) the SPH
terms for the conservative part of the equations should be derived
from a Lagrangian; (3) we found that the use of the standard cubic
spline kernel for drag terms could be significantly inaccurate; (4) we
encountered several previously unexplored resolution issues in sim-
ulating two-fluid mixtures; (5) aspects of the implicit timestepping
scheme suggested by Monaghan (1997) were found to be problem-
atic; (6) that treatments of drag have to date been generally limited
to linear drag regimes; and finally (7) that the existing schemes
– having been developed with both astrophysical and geophysi-
cal dust problems in mind – have not been widely benchmarked
on problems appropriate to astrophysics. Indeed, there is a gen-
eral lack of standardized test problems for two-fluid dust/gas codes,
a problem partially addressed by our first paper (Laibe & Price
2011a).

In this and a companion paper (Laibe & Price 2011b, hereafter
Paper II), we set out to systematically address issues (1)–(7) in order
to develop a robust and accurate code for simulating the dynamics of
dust in star and planet formation. The importance of modelling the
dust–gas interaction has been highlighted by recent studies show-
ing that instabilities in dust–gas mixtures are good candidates for
triggering the concentration of dust during planetesimal formation
(Goodman & Pindor 2000; Youdin & Goodman 2005).

The continuum equations and the relevant parameters describ-
ing the evolution of dust–gas mixtures are given in Section 2.1.
Section 2 describes the two-fluid SPH algorithm, addressing issues
(1)–(3). The code is benchmarked against a suite of test problems
that we have specifically designed in order to provide standard-
ized benchmarks for other two-fluid gas/dust codes, addressing
issues (4) and (7) (Section 4). The implicit timestepping scheme
and treatment of non-linear drag (issues 5 and 6) are discussed in
Paper II.

2 TWO -FLUID MIXTURES IN SPH

2.1 Two-fluid gas and dust mixtures

2.1.1 Densities

The fact that dust grains of finite size occupy a finite volume is
accounted for by defining the volume fraction available to the gas
according to (e.g. Marble 1970; Harlow & Amsden 1975)

θ = 1 − ρ̂d

ρd
. (1)

This means that the volume densities of gas and dust ρ̂g and ρ̂d,
respectively, are distinguished from the intrinsic densities denoted

by ρg and ρd, respectively, according to

ρ̂d = (1 − θ )ρd, (2)

ρ̂g = θρg. (3)

The effects associated with finite dust particle size are mostly neg-
ligible in astrophysical problems since typically the intrinsic dust
density ρd is much higher than the volume density ρ̂d and thus
θ ≈ 1. We retain these terms, as in earlier SPH formulations (cf.
Monaghan & Kocharyan 1995) in order to retain a general algorithm
that can be applied both within and outside of astrophysics.

The conservation of mass in a two-fluid mixture is thus expressed
by the continuity equations

∂ρ̂g

∂t
+ ∇.

(
ρ̂gvg

)
= 0, (4)

∂ρ̂d

∂t
+ ∇. (ρ̂dvd) = 0, (5)

where vg and vd are the gas and dust fluid velocities, respectively.

2.1.2 Equations of motion

The equations of motion, expressing momentum conservation in a
continuous, inviscid, two-fluid mixture of gas and dust are given by

ρ̂g

(
∂vg

∂t
+ vg.∇vg

)
= −θ ∇Pg + ρ̂g f − FV

drag, (6)

ρ̂d

(
∂vd

∂t
+ vd.∇vd

)
= −∇Pd − (1 − θ ) ∇Pg + ρ̂d f + FV

drag, (7)

where Pg and Pd are the intrinsic pressures. Any intrinsic viscosities
have been neglected. For astrophysical purposes, it may be assumed
that the dust is pressureless, i.e. Pd = 0. Similarly, the term (1 −
θ )∇Pg in the momentum equation for the dust phase – a buoyancy
term related to the finite size of the dust particles – is in general
negligibly small. The reader should note that the definitions of
physical quantities in a two-fluid medium require the local fluid
volume over which the averaging is performed to be defined (see
e.g. Marble 1970; Fan & Zhu 1998).

The two fluids exchange momentum FV
drag, the drag force per

unit volume, the expression for which is obtained by averaging the
local drag stress tensor (denoted ϵ

ij
drag) over the surface area of the

dust grains:

F V,i
drag = 1

V

∫

Ad

ϵ
ij
dragdAj . (8)

In the case where the local distribution of dust particles is homo-
geneous (i.e. dust particles have the same mass, size and intrinsic
density), equation (8) simplifies to

FV
drag = K(vg − vd). (9)

Note that since FV
drag is a force per unit volume, the drag coefficient

K has dimensions of mass per unit volume per unit time. This
coefficient is related to the drag coefficient on a single grain (denoted
by Ks) by

K = ρ̂d

md
Ks, (10)

where md is the mass per grain. The drag force (not per unit volume)
on a single grain is given by

Fdrag = Ks(vg − vd). (11)
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treatment of the drag terms) in Monaghan (1997) and applied in
an astrophysical context to the dynamics of dust grains in proto-
planetary discs (Maddison, Humble & Murray 2003; Rice et al.
2004; Barrière-Fouchet et al. 2005). The particle-based nature of
the SPH formalism means that the addition of a dusty fluid is nat-
ural. More importantly, the drag term that couples the two phases
can be implemented such that the total linear and angular momenta
of the system are exactly (and simultaneously) conserved, in line
with the Hamiltonian and exactly conservative nature of the core
SPH method (e.g. Price 2011).

However, the standard methods for treating dusty gas in SPH
were developed over 15 years ago and our initial attempts to sim-
ply apply the existing formulations uncovered several issues that
needed to be addressed. Specifically, (1) the original formulations
assumed a spatially constant SPH smoothing length; (2) the SPH
terms for the conservative part of the equations should be derived
from a Lagrangian; (3) we found that the use of the standard cubic
spline kernel for drag terms could be significantly inaccurate; (4) we
encountered several previously unexplored resolution issues in sim-
ulating two-fluid mixtures; (5) aspects of the implicit timestepping
scheme suggested by Monaghan (1997) were found to be problem-
atic; (6) that treatments of drag have to date been generally limited
to linear drag regimes; and finally (7) that the existing schemes
– having been developed with both astrophysical and geophysi-
cal dust problems in mind – have not been widely benchmarked
on problems appropriate to astrophysics. Indeed, there is a gen-
eral lack of standardized test problems for two-fluid dust/gas codes,
a problem partially addressed by our first paper (Laibe & Price
2011a).

In this and a companion paper (Laibe & Price 2011b, hereafter
Paper II), we set out to systematically address issues (1)–(7) in order
to develop a robust and accurate code for simulating the dynamics of
dust in star and planet formation. The importance of modelling the
dust–gas interaction has been highlighted by recent studies show-
ing that instabilities in dust–gas mixtures are good candidates for
triggering the concentration of dust during planetesimal formation
(Goodman & Pindor 2000; Youdin & Goodman 2005).

The continuum equations and the relevant parameters describ-
ing the evolution of dust–gas mixtures are given in Section 2.1.
Section 2 describes the two-fluid SPH algorithm, addressing issues
(1)–(3). The code is benchmarked against a suite of test problems
that we have specifically designed in order to provide standard-
ized benchmarks for other two-fluid gas/dust codes, addressing
issues (4) and (7) (Section 4). The implicit timestepping scheme
and treatment of non-linear drag (issues 5 and 6) are discussed in
Paper II.

2 TWO -FLUID MIXTURES IN SPH

2.1 Two-fluid gas and dust mixtures

2.1.1 Densities

The fact that dust grains of finite size occupy a finite volume is
accounted for by defining the volume fraction available to the gas
according to (e.g. Marble 1970; Harlow & Amsden 1975)

θ = 1 − ρ̂d

ρd
. (1)

This means that the volume densities of gas and dust ρ̂g and ρ̂d,
respectively, are distinguished from the intrinsic densities denoted

by ρg and ρd, respectively, according to

ρ̂d = (1 − θ )ρd, (2)

ρ̂g = θρg. (3)

The effects associated with finite dust particle size are mostly neg-
ligible in astrophysical problems since typically the intrinsic dust
density ρd is much higher than the volume density ρ̂d and thus
θ ≈ 1. We retain these terms, as in earlier SPH formulations (cf.
Monaghan & Kocharyan 1995) in order to retain a general algorithm
that can be applied both within and outside of astrophysics.

The conservation of mass in a two-fluid mixture is thus expressed
by the continuity equations

∂ρ̂g

∂t
+ ∇.

(
ρ̂gvg

)
= 0, (4)

∂ρ̂d

∂t
+ ∇. (ρ̂dvd) = 0, (5)

where vg and vd are the gas and dust fluid velocities, respectively.

2.1.2 Equations of motion

The equations of motion, expressing momentum conservation in a
continuous, inviscid, two-fluid mixture of gas and dust are given by

ρ̂g

(
∂vg

∂t
+ vg.∇vg

)
= −θ ∇Pg + ρ̂g f − FV

drag, (6)

ρ̂d

(
∂vd

∂t
+ vd.∇vd

)
= −∇Pd − (1 − θ ) ∇Pg + ρ̂d f + FV

drag, (7)

where Pg and Pd are the intrinsic pressures. Any intrinsic viscosities
have been neglected. For astrophysical purposes, it may be assumed
that the dust is pressureless, i.e. Pd = 0. Similarly, the term (1 −
θ )∇Pg in the momentum equation for the dust phase – a buoyancy
term related to the finite size of the dust particles – is in general
negligibly small. The reader should note that the definitions of
physical quantities in a two-fluid medium require the local fluid
volume over which the averaging is performed to be defined (see
e.g. Marble 1970; Fan & Zhu 1998).

The two fluids exchange momentum FV
drag, the drag force per

unit volume, the expression for which is obtained by averaging the
local drag stress tensor (denoted ϵ

ij
drag) over the surface area of the

dust grains:

F V,i
drag = 1

V

∫

Ad

ϵ
ij
dragdAj . (8)

In the case where the local distribution of dust particles is homo-
geneous (i.e. dust particles have the same mass, size and intrinsic
density), equation (8) simplifies to

FV
drag = K(vg − vd). (9)

Note that since FV
drag is a force per unit volume, the drag coefficient

K has dimensions of mass per unit volume per unit time. This
coefficient is related to the drag coefficient on a single grain (denoted
by Ks) by

K = ρ̂d

md
Ks, (10)

where md is the mass per grain. The drag force (not per unit volume)
on a single grain is given by

Fdrag = Ks(vg − vd). (11)
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treatment of the drag terms) in Monaghan (1997) and applied in
an astrophysical context to the dynamics of dust grains in proto-
planetary discs (Maddison, Humble & Murray 2003; Rice et al.
2004; Barrière-Fouchet et al. 2005). The particle-based nature of
the SPH formalism means that the addition of a dusty fluid is nat-
ural. More importantly, the drag term that couples the two phases
can be implemented such that the total linear and angular momenta
of the system are exactly (and simultaneously) conserved, in line
with the Hamiltonian and exactly conservative nature of the core
SPH method (e.g. Price 2011).

However, the standard methods for treating dusty gas in SPH
were developed over 15 years ago and our initial attempts to sim-
ply apply the existing formulations uncovered several issues that
needed to be addressed. Specifically, (1) the original formulations
assumed a spatially constant SPH smoothing length; (2) the SPH
terms for the conservative part of the equations should be derived
from a Lagrangian; (3) we found that the use of the standard cubic
spline kernel for drag terms could be significantly inaccurate; (4) we
encountered several previously unexplored resolution issues in sim-
ulating two-fluid mixtures; (5) aspects of the implicit timestepping
scheme suggested by Monaghan (1997) were found to be problem-
atic; (6) that treatments of drag have to date been generally limited
to linear drag regimes; and finally (7) that the existing schemes
– having been developed with both astrophysical and geophysi-
cal dust problems in mind – have not been widely benchmarked
on problems appropriate to astrophysics. Indeed, there is a gen-
eral lack of standardized test problems for two-fluid dust/gas codes,
a problem partially addressed by our first paper (Laibe & Price
2011a).

In this and a companion paper (Laibe & Price 2011b, hereafter
Paper II), we set out to systematically address issues (1)–(7) in order
to develop a robust and accurate code for simulating the dynamics of
dust in star and planet formation. The importance of modelling the
dust–gas interaction has been highlighted by recent studies show-
ing that instabilities in dust–gas mixtures are good candidates for
triggering the concentration of dust during planetesimal formation
(Goodman & Pindor 2000; Youdin & Goodman 2005).

The continuum equations and the relevant parameters describ-
ing the evolution of dust–gas mixtures are given in Section 2.1.
Section 2 describes the two-fluid SPH algorithm, addressing issues
(1)–(3). The code is benchmarked against a suite of test problems
that we have specifically designed in order to provide standard-
ized benchmarks for other two-fluid gas/dust codes, addressing
issues (4) and (7) (Section 4). The implicit timestepping scheme
and treatment of non-linear drag (issues 5 and 6) are discussed in
Paper II.

2 TWO -FLUID MIXTURES IN SPH

2.1 Two-fluid gas and dust mixtures

2.1.1 Densities

The fact that dust grains of finite size occupy a finite volume is
accounted for by defining the volume fraction available to the gas
according to (e.g. Marble 1970; Harlow & Amsden 1975)

θ = 1 − ρ̂d

ρd
. (1)

This means that the volume densities of gas and dust ρ̂g and ρ̂d,
respectively, are distinguished from the intrinsic densities denoted

by ρg and ρd, respectively, according to

ρ̂d = (1 − θ )ρd, (2)

ρ̂g = θρg. (3)

The effects associated with finite dust particle size are mostly neg-
ligible in astrophysical problems since typically the intrinsic dust
density ρd is much higher than the volume density ρ̂d and thus
θ ≈ 1. We retain these terms, as in earlier SPH formulations (cf.
Monaghan & Kocharyan 1995) in order to retain a general algorithm
that can be applied both within and outside of astrophysics.

The conservation of mass in a two-fluid mixture is thus expressed
by the continuity equations

∂ρ̂g

∂t
+ ∇.

(
ρ̂gvg

)
= 0, (4)

∂ρ̂d

∂t
+ ∇. (ρ̂dvd) = 0, (5)

where vg and vd are the gas and dust fluid velocities, respectively.

2.1.2 Equations of motion

The equations of motion, expressing momentum conservation in a
continuous, inviscid, two-fluid mixture of gas and dust are given by

ρ̂g

(
∂vg

∂t
+ vg.∇vg

)
= −θ ∇Pg + ρ̂g f − FV

drag, (6)

ρ̂d

(
∂vd

∂t
+ vd.∇vd

)
= −∇Pd − (1 − θ ) ∇Pg + ρ̂d f + FV

drag, (7)

where Pg and Pd are the intrinsic pressures. Any intrinsic viscosities
have been neglected. For astrophysical purposes, it may be assumed
that the dust is pressureless, i.e. Pd = 0. Similarly, the term (1 −
θ )∇Pg in the momentum equation for the dust phase – a buoyancy
term related to the finite size of the dust particles – is in general
negligibly small. The reader should note that the definitions of
physical quantities in a two-fluid medium require the local fluid
volume over which the averaging is performed to be defined (see
e.g. Marble 1970; Fan & Zhu 1998).

The two fluids exchange momentum FV
drag, the drag force per

unit volume, the expression for which is obtained by averaging the
local drag stress tensor (denoted ϵ

ij
drag) over the surface area of the

dust grains:

F V,i
drag = 1

V

∫

Ad

ϵ
ij
dragdAj . (8)

In the case where the local distribution of dust particles is homo-
geneous (i.e. dust particles have the same mass, size and intrinsic
density), equation (8) simplifies to

FV
drag = K(vg − vd). (9)

Note that since FV
drag is a force per unit volume, the drag coefficient

K has dimensions of mass per unit volume per unit time. This
coefficient is related to the drag coefficient on a single grain (denoted
by Ks) by

K = ρ̂d

md
Ks, (10)

where md is the mass per grain. The drag force (not per unit volume)
on a single grain is given by

Fdrag = Ks(vg − vd). (11)
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Dust	dynamics	in	molecular	clouds

• Small	dust	parHcles	(~0.1μm)	are	collisionally	coupled	to	gas	

• Usually	assume	that	dust	and	gas	are	well	mixed	in	molecular	clouds	

• Gas	to	dust	raHo	~100	

• But	large	dust	parHcles	may	be	poorly	coupled	

• May	be	a	populaHon	of	large	grains	(>1μm)	in	molecular	clouds	

• Cloud-shine	observaHons	(e.g.		Foster	&	Goodman	2006;	Steinacker	et	al.	2014,	2015)	

• Mid-IR	exHncHon	(e.g.	Wang,	Li	&	Jiang	2015a,b)	and	sub-mm	emissivity	(e.g.	Mieenen	
et	al.	2012;	Schnee	et	al.	2014)



Dust	dynamics	in	molecular	clouds

Tricco,	Price	&	Laibe	(2017)

L54 T. S. Tricco, D. J. Price and G. Laibe

Figure 1. Column density of gas (top row) and dust (centre row) and the dust-to-gas ratio (bottom row) for 0.1, 1 and 10 µm dust grains (left to right) at
t/tc = 4 (≈2.93 Myr). The large-scale structure of the dust traces the gas in all cases. For 0.1 µm grains, there is no discernible difference between the gas
column density and the column dust density. Large, 10 µm grains (right) show a preferential concentration towards dense regions.

3 R ESULTS

3.1 Column densities

Fig. 1 compares the gas and dust column densities and the column
dust-to-gas ratio. For 0.1 µm dust grains (left column), the differ-
ence between column gas and dust density is imperceptible. For 1
µm grains, small differences are visible in the low-density regions
(middle column), but the overall morphology of the dust and gas
column densities are similar. By contrast, the dust column density
for 10 µm grains shows distinct differences from the gas column
density in both low- and high-density regions (right column), re-
flected in small-scale variations in the dust-to-gas ratio (bottom right
panel). However, even for the largest grain size we simulated (10
µm), the morphology of the dust and gas column densities remain
closely correlated and dust column density remains an excellent
tracer of the gas.

3.2 Size-sorting of dust grains

Fig. 2 shows cross-sections of the gas and dust densities in the
mid-plane of our computational domain. The gas density structure
is similar between the 0.1, 1 and 10 µm dust grain calculations (top
panels). For 0.1 µm grains (left column), the dust density closely
matches the gas density, as reflected by the nearly uniform dust-
to-gas ratio in Fig. 1. For 1 µm grains (centre panels), low-density
regions appear diminished in dust compared to the gas. This effect
is more pronounced for 10 µm grains (right-hand panels). In this
case, dust filaments remain correlated with gas filaments, but are
thinner, with a sharper contrast between the low- and high-dust
density regions (also seen in Fig. 1) and with dust concentrated
towards the dense gas filaments. The dust-to-gas ratio is increased
by up to an order of magnitude within the filaments.

Fig. 3 shows the probability density functions (PDFs) of the gas
and dust densities. The gas density PDF is log-normal, characteristic
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• Dust	dynamics	depend	on	
grain	size	

• Small	grains	(~0.1	micron)	
are	well-coupled	to	the	gas	

• Dust-to-gas	raHo	of	larger	
grains	can	vary	

• Leads	to	size-sorHng	in	
molecular	clouds

On the dust-to-gas ratio in molecular clouds L55

Figure 2. Turbulent ‘size-sorting’ of dust grains. We show cross-sections of the gas (top) and dust (bottom) density for 0.1, 1 and 10 µm dust grains (left to
right) at t/tc = 4 (≈2.93 Myr). For small dust grains (0.1 µm), the dust almost perfectly traces the gas. As the dust grain size increases, the dust still traces the
morphology of the gas filaments, but becomes preferentially concentrated in dense regions.

Figure 3. Time-averaged volume weighted PDFs of ln (ρg/ρ0) and
ln (ρd/ρ0). Shaded regions represent the standard deviation of the time
averaging. The gas density is log-normal. Small, 0.1 µm dust grains show a
log-normal PDF, mirroring the gas. Larger grains show a skewed distribu-
tion, with regions of both low- and high-dust densities being more common,
indicating the preferential concentration of large grains into dense regions.

of supersonic, isothermal turbulence (e.g. Vazquez-Semadeni 1994;
Passot & Vázquez-Semadeni 1998), and is similar for all three grain
sizes, indicating that the gas density PDF is not significantly affected
by the backreaction of the grains on the gas.

The dust density PDF – shifted towards lower densities by the
mean dust-to-gas ratio – is also log-normal for 0.1 µm dust grains.
This is expected since the dust remains tightly coupled to the gas (see
Figs 1 and 2). For 1 and 10 µm grains, the high-density tail of the
dust PDF remains log-normal, matching the gas density. However,
the low-density tail broadens as the grain size increases due to the
dependence of ts on gas density. The stopping time increases in
low-density gas, allowing large grains to decouple, but decreases
within dense filaments, trapping dust. This leads to transfer of large
grains from low-density gas into filaments (size-sorting), causing
the broadening of the PDF as shown in Fig. 3.

Figure 4. Time-averaged volume weighted PDFs of the dust-to-gas ratio.
The dust-to-gas ratio for all grain sizes is peaked at 1 per cent. Minimal
variation in the dust-to-gas ratio occurs for 0.1 µm grains, but the PDFs
broaden with increasing grain size caused by size-sorting of large grains,
meaning larger volumes of the cloud are either dust enriched or dust depleted.

3.3 Variations in the dust-to-gas ratio

Fig. 4 shows PDFs of the dust-to-gas ratio. For 0.1 µm grains, the
dust-to-gas ratio is sharply peaked at 1 per cent. The maximum in
the PDF for 1 and 10 µm dust grains remains close to 1 per cent,
but with a modest increase in higher dust-to-gas ratios and a broad
distribution of low dust-to-gas ratios. This occurs due to the size-
sorting of dust grains discussed previously.

Table 1 quantifies the volumetric mean dust-to-gas ratios in all
of our calculations, with deviations reflecting the 68th percentile
about the median. For 0.1 µm dust grains, the mean is 0.92 per cent,
close to the starting value of 1 per cent. The mean decreases with
increasing grain size, dropping to 0.77 per cent for 1 µm grains and
0.56 per cent for 10 µm grains. However, the deviation increases,
reflecting the broadened dust-to-gas PDF (Fig. 4). The 1283 and
2563 particle calculations converge in the mean dust-to-gas ratio.

MNRASL 471, L52–L56 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article-abstract/471/1/L52/3868218 by U
niversity of Exeter user on 24 June 2019



Dust	dynamics	during	protostellar	collapse

• In	Exeter,	we’ve	been	starHng	to	study	smaller	scales	

• Using	two-fluid	dust-gas	SPH	simulaHons	

• Studying	dynamics	of	different	grain	sizes	during	protostellar	collapse	

• Used	two-fluid	gas/dust	SPH	simulaHons	(Bate	&	Loren-Aguilar	2017)	

• RotaHng	Bonnor-Ebert	spheres,	dust	iniHally	well-mixed	and	moving	with	gas



Rapidly-rotaHng	molecular	cloud	core

Bate	&	Loren-Aguilar	(2017)



Slowly-rotaHng	molecular	cloud	core

Bate	&	Loren-Aguilar	(2017)



Dust	dynamics	during	protostellar	collapse

• Large	grains	(size	>10μm)	collapse	faster	than	gas	

• Experience	gravity,	but	not	gas	pressure	

• ImplicaHons	if	large	grains	are	present	

• Dust-to-gas	raHo	(of	large	grains)	may	increase	in	central	regions	

• Produces	a	size-distribuHon	favouring	large	grains	without	grain	growth	(size	sorHng)	

• Large	grains	pass	through	the	midplane,	oscillate,	and	sekle	to	disc-like	geometry	
before	gas	has	collapsed	to	form	a	protostar



Dust	dynamics	during	disc	formaHon

• PotenHal	numerical	issues	

• Self-gravity	can	exacerbate	clumping	of	dust	parHcles	

• Produce	local	gravitaHonal	collapse	

• Use	sink	parHcles	to	follow	collapse	beyond	first	hydrostaHc	core	phase	

• IniHal	condiHons	

• Unstable	Bonnor-Ebert	sphere	

• Solid	body	rotaHon	+	turbulent	velocity	field	

• Dust-to-gas	raHo	iniHally	uniform



Dust	in	a	turbulent,	collapsing	molecular	cloud	core

Bate,	in	preparaHon

100	μm	Dust 1	mm	Dust



Dust	dynamics	during	disc	formaHon

• Grains	with	sizes	<100μm	are	well-coupled	to	the	gas	

• Larger	grains,	if	present	

• Tend	to	enhance	structures	(e.g.	spiral	arms	and	filaments)	

• Rapidly	undergo	radial	migraHon	-	mm	dust	disc	smaller	than	gas	disc	

• Future	work	

• Need	to	begin	with	small	grains	and	treat	dust	growth


