Signatures of an eccentric disk: Gas and Dust in IRS 48

Josh Calcino University of Queensland

With: Daniel Price, Christophe Pinte, Enrico Ragusa, Valentin Christiaens, Nicolas Cuello, Giovanni Dipierro

Observations of Transition Disks

1.0

Are Vortices Responsible?

- Most popular explanation
- Requires low viscosity
- Created by various hydrodynamic instabilities
- Leads to large dust concentration
- Possible mechanism for planet formation

Caused by planetary mass objects!

James Owen, arXiv:1607.08250

Vortices with Dust

- Dust concentrates in the pressure maximum
- Leads to large dust concentration
- Possible mechanism for planet formation

arXiv:1405.2790

What about Companions?

50 Mj

What about Companions?

What about **Dust Grains**?

HD 142527

- Horseshoes in mm wavelengths
- Spiral arms in scattered light
- Shadow on the disk
- Stellar companion detected

Star mass: 1.8 Msun

Com mass: 0.4 Msun

arXiv: 1803:02484

IRS48 is quite enigmatic

van der Marel et al., arXiv:1511.07149

2 Solar Mass central mass

0.4 Solar Mass companion

10 au separation

alpha_SS = 0.0015

A solution without Vortices

Contrast ratio depends strongly on the assumed dust grain size distribution

Changes with Grain Size

Larger grains are more azimuthally trapped

Arxiv:1508.01003

a

A quick note about kinematics...

12

v dv

What are the Vortex Predictions?

- Planetary mass companion (~Mj) somewhere, maybe internal to the vortex
- Symmetric velocity map
- No strong kinks in channel maps

arXiv:1809.07001

Vortex Channel Maps

arXiv:1809.07001

Vortex Channel Maps

What are the Circumbinary Disk Predictions?

- Massive companion (~0.4 Msun) at ~10 au
- Eccentric disc, star offset from centre of disc
- Asymmetric velocity map
- Kinky channel maps

Velocity Map

The Kinematics look Kinky!

The CO Gap is smaller than the Dust Gap

Caveats

- Disc cavity smaller than observations
- Dust asymmetry not as large as observations
- No massive companion detected

- Increase secondary/primary mass ratio, increase primary/secondary separation
- Run simulations longer, lower viscosity
- No massive companion detected yet

Is there a companion?

0.6 0.8. offset 0 0.7 0.8 10,2 Offset (1, 0,2 0.8 0.07 0 .6 0.00

Observations taken with Keck

arXiv:1904.05990

Is there a companion?

	Oph IRS 48			
Parameter	$\operatorname{Symmetric}$	Asymmetric	Companion	
Dust to gas ratio	$3.10 \pm 0.66 \times 10^{-3}$	$3.20 \pm 0.26 \times 10^{-3}$	$2.06 \pm 0.09 \times 10^{-3}$	
δ_d	$2.48 \pm 0.43 \times 10^{-4}$	$2.11 \pm 0.23 \times 10^{-4}$	$4.20 \pm 0.35 \times 10^{-4}$	
δ_1	$1.01 \pm 0.10 \times 10^{-2}$	$9.40 \pm 0.61 \times 10^{-3}$	$1.24 \pm 0.06 \times 10^{-2}$	
r_d (AU)	1.6 ± 0.2	1.4 ± 0.1	2.0 ± 0.1	
r_d (mas)	12 ± 1	10 ± 1	15 ± 1	
r_1 (AU)	15.0 ± 0.3	14.6 ± 0.1	15.2 ± 0.2	
r_1 (mas)	112 ± 2	108 ± 1	113 ± 1	~10 au separation
r_2 (AU)	32.1 ± 0.9	31.0 ± 0.3	31.3 ± 0.3	
r_2 (mas)	238 ± 7	231 ± 2	233 ± 2	
Inclination (°)	54.8 ± 0.5	54.2 ± 0.3	52.4 ± 0.3	Flux ratio some what
Position angle ($^{\circ}$)	99.0 ± 0.6	98.8 ± 0.3	96.5 ± 0.4	
Star offset (mas)	-	5.0 ± 0.4	5.3 ± 0.3	consistent with the
Star offset position angle (°)	-	118.7 ± 7.8	122.9 ± 8.2	mass ratio
Companion offset (mas)	-	-	104 ± 2	
Companion position angle (°)	-	-	288.6 ± 4.6	
Companion contrast (mag)	-	-	3.97 ± 0.05	
Flux Ratio (7.8)	7.8	7.8	7.8	
Reduced $\chi^2_{\rm shot}$	65.1	60.0	48.0	
Reduced $\chi^2_{\rm shot}$ 2016 data	68.3	61.0	52.6	

Circumbinary disk or a Vortex?

Feature	С	V
Dustasymmetry	\checkmark	\checkmark
Dust contrast Ratio	? 🗸	\checkmark
Velocity Map	\checkmark	?
Channel Maps	\checkmark	?
Diskasymmetry	\checkmark	?
Offset Stellar Position	\checkmark	?

Observations of Transition Disks

1.0