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Challenge of high-contrast imaging
I. Introduction

❖ 2 major hurdles: - contrast:         10-6–10-9

            - angular resolution:                   0.1’’–1’’
~10-3–10-4 in IR for newborn/young giant planets
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Why direct imaging?
I. Introduction

❖ Invaluable information: 

3) Spectrum 
=> Teff, log(g), [M/H], clouds

2) Exact orbital architecture 
of exoplanetary systems

1) Parameter space 
inaccessible with other 
techniques 

4) Niche: young giant planets => constraints on the process of giant planet formation

Gravitational instability Core accretion

❖ Where? Possible at R>15au?
❖ How? Hot- vs Cold-start?

+ Gravo turbulence
(i.e. as binary stars)
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0.5’’

Pupil plane

Lyot stop Helical phase ramp

Input pupilFocal plane
!ϕ = eimθ

On-axis 
PSF

Off-axis 
PSF

Detector

(Mawet+05, Absil+16)



4 Pillars of high-contrast imaging

AOseeing-limited AO + coron.

0.5’’ 0.5’’0.5’’

AO + coron.
PSF subtracted

Frames combined

… … …

Adaptive optics Coronagraphy Observing technique

I. Introduction

Image post-processing

Extreme-
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Differential imaging (2)
Spectral Differential Imaging (SDI)

The companion stays fixed, 
while the PSF expands with WL

Credit: B. MacIntosh
Credit: C. Marois

Angular Differential Imaging (ADI)

The companion rotates with the field, 
while the PSF stays fixed

(Sparks & Ford 2002) (Marois+2006)

I. Observing strategies

(or spectral deconvolution)
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Differential imaging (3)
Polarimetric Differential Imaging (PDI)

HD 142527

Credit: Avenhaus

IM Lup

Credit: Avenhaus

HD 135344 B

Credit: Stolker

(Kuhn+2001; Quanz+2011)
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❖ Limitation: quasi-static speckles
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ANDROMEDA

Pairwise subtraction 
of frames with 

~0.5 FWHM rotation

Maximum match-filter 
in the residual images

Combination of all 
residual images

Detection SNR map
Astrometry/Photometry

Pro: In theory only sensitive to point sources

(Mugnier+2009; Cantalloube+2015)

t

{

I. Post-processing algorithms
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Basic calibration
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- Flat fielding
- Bad pixel correction
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Image recentering

Bad frames removal

Calibrated images

PSF subtraction

PSF modeling

Image combination

Final image

Characterization of 
detected companions 

Median
PCA
ANDROMEDA
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+
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Forward modelling
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Need to reduce a new high-contrast 
imaging dataset?

Don’t want to ask the SPHERE 
consortium to reduce your data?

Want an open-source code, written by 
honest astronomers?

https://github.com/vortex-exoplanet/VIPAvailable here (FOR FREE!*):

Open-source python package

Jupyter notebook tutorial available 

Most state-of-the-art processing algorithms available

Instrument agnostic 

Well-documented: https://vip.readthedocs.io/en/latest/

Contributions welcome!

❖  

❖  

❖  

Find your own planet now!

* As long as proper citation to the Gomez Gonzalez et al. 2017 paper is made
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II. Direct imaging results

= evolved ?

DSHARP, Andrews+2018

❖ Occurrence: ~ 1% of all stars have 5-13MJ 
between 30-300 AU (Bowler+16)

❖ Spectral + dynamical constraints favour hot-start 
models (Bonnefoy+13, Marleau+14)
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Vigan+2017

❖ 13 imaging surveys compiled
❖ 200 young FGK stars (d < 100pc)
❖ 3 sub-stellar companions

❖ Comparison to planet population 
synthesis models:
❖ CA unlikely to explain the detections 
❖ GI extremely inefficient OR all GI 

clumps quickly migrate inward
(Nayakshin+2017)

=> Need of constraints at younger ages!
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LkCa 15 b, c, d

HD 169142 b, c

Protoplanet claims Counter-evidence

HD 100546 b, c

Reggiani+14Biller+14

Follette+17Currie+14Quanz+13

Thalmann+16Kraus & Ireland 12 Sallum+15

Ligi+18Ligi+18

Rameau+17

Currie+19?
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What can we do then?
II. Direct imaging results

Forward modelling (1) 

❖ Inject extended features 
and re-process images

Christiaens+2019a

PCA-SADI PCA-ASDI

Detections at multiple epochs / instruments / techniques
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What can we do then?
II. Direct imaging results

Forward modelling (2)
❖ Create a RT model and post-process it

❖ Create total intensity disc model based on simultaneous polarized observations
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Christiaens/Ginski+ in prep.
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PDS 70: the only robust case?
II. Direct imaging results

Hashimoto+2012

0.1’’
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Polarized light - 1.66 µm PCA-ADI - 2.2 µm m-ADI - 2.2 µm

0.1’’

20au

Disk Protoplanet(s)

Long+2018

Continuum - 0.88 mm

=> ~10 MJup with CPD? Christiaens+2019b

Müller+2018Keppler+2018

Haffert+2019

Christiaens+2019a

PCA-SADI

PCA-ASDI

TO BE CONTINUED…
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Machine learning

Negative samples (speckle+bkg)Positive samples (companions)

❖ Machine trained with post-processed patches of images:

❖ Comparison to classical post-processing:

Machine learningPCA-ADI

=> 1.0-2.5 mag contrast improvement!

(Gomez Gonzalez+18, Hou Yip+19)

III. New promising techniques
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High-dispersion coronagraphy (HDC)

❖ Lab demo

❖ Principle

❖ Instruments in prep.:
❖ Keck/KPIC (Mawet+)
❖ VLT/HiRise = SPHERE+CRIRES (Vigan+)
❖ ELT?

(Mawet+17, Wang+17)

Snellen+ group
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III. New promising techniques

❖ Concept: 
1) subtract a scaled, continuum-normalised 
spectrum of the star at each spaxel
2) look for residual sharp spectral features

(Haffert+19)High-resolution Spectral Differential Imaging

❖ Pros
❖ No bias from the disk
❖ Time-efficient (5min in H ! )α

} Rules out other origins 
than true companions

❖ E.g. H !  line 
❖ Velocity offset
❖ Line width
❖ Line shape 

α

=> Estimate of mass accretion rate



IV. Future instruments

❖ Upgrade: AO+coronagraph+new chopping
❖ Mid-IR instrument at the VLT (up to ! ~10µm).
❖ Inner working angle: ~0.3’’ at 10µm

=> Potential for embedded protoplanets in large discs
❖ Science Verification starts in Sept 2019

λ

At the VLT
❖ NEAR (= VISIR 2.0)
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❖ Upgrade: AO+coronagraph+new chopping
❖ Mid-IR instrument at the VLT (up to ! ~10µm).
❖ Inner working angle: ~0.3’’ at 10µm

=> Potential for embedded protoplanets in large discs
❖ Science Verification starts in Sept 2019

λ

At the VLT
❖ NEAR (= VISIR 2.0)

❖ ERIS (= NACO 2.0)

❖ Upgrade: new detector, improved AO
❖ NIR to thermal IR (! ~1-5µm)
❖ vortex coronagraph
❖ Inner working angle: ~0.1’’ at 3.8µm
❖ Online in 2020

λ



JWST
WL: 0.6-28 µm
D=6.5m

❖ NIRSPEC: 0.6–5 µm

❖ MIRI: 5–28 µm

❖ Characterization of protoplanets and young 
Neptunes far from their star (Schlieder+17)

IV. Future instruments



At the ELT
IV. Future instruments



At the ELT
❖ METIS

❖ Spectrograph and imager at ! ~3–20µm with D = 39m
❖ Imaging and characterization of:

❖ protoplanets (140 pc)
❖ nearby (<10pc) exo-Earths (Brandl+14; Quanz+15ab)

❖ HDC+ELT => Biosignatures on nearby exo-Earths (Snellen+15)

λ

IV. Future instruments
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Mass vs radial separation diagram

adapted from Bowler 2016
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Take-away messages
❖ Direct imaging surveys at >10Myr: 

❖ Very few 5-13 MJ GPs on large (30–300 au) orbits (~1% occurrence)
❖ CA unlikely to explain the few detections => gravo-turbulence?
❖ GI very inefficient OR very quick inward migration

❖ At <10Myr? 
❖ A lot of false positives due to disc signals filtered into point sources
❖ Most robust detection: PDS 70 b (and c)
❖ Forward modelling required!

❖ HRSDI: new promising technique to detect accreting planets

❖ Upcoming IR instruments: high potential for planet formation



Food for disc-ussion
❖ Limitations of IR HCI to study protoplanets: strong emission from the disc

=> Are we bound to image planets that already carved large gaps?

(Zhu+18)

❖ Need for longer IR wavelengths
❖ Is the disc expected to be fainter (less bias)?

❖ Synergy with ALMA
❖ Potential for independent planet flux and mass estimates
❖ BUT… direct detection easier in larger gaps <-> Kinematic detection requires gas
❖ Constraints on CPD (e.g. ! )?α

❖ Directly imaged adolescent planets = those creating the large DSHARP gaps?
❖ Occurrence of large gaps at large separations?


