The case of PDS 70

Valentin Christiaens

S. Casassus, O. Absil, F. Cantalloube, C. Gomez, J. Girard, D. Price, C. Pinte et al. +other works

Disc-ussion workshop (15-19/07/2019)

Outline

- * I. Circumstellar disc
- * II. Protoplanet(s) vs extended disc structures
- III. Circumplanetary disc(s)
- * IV. Future plans

(Pre-)transition disc

NIR polarised light

Hashimoto+2012

(Pre-)transition disc

NIR polarised light

(Pre-)transition disc

NIR polarised light

(Pre-)transition disc

sub-mm continuum

Long+2018

Keppler+2019

(Pre-)transition disc

sub-mm continuum

(Pre-)transition disc

Keppler+2019

(Pre-)transition disc

Keppler+2019

* No reported kink => Not enough gas in large gap?

(Pre-)transition disc

Keppler+2019

* No reported kink => Not enough gas in large gap?

Tentative localized ¹²CO emission

Müller+2018

Point source or filtered extended signal?

Point source or filtered extended signal?

ADI

Christiaens+2019a

Point source or filtered extended signal?

15

PCA-SADI

0.40.40.20.20.20.20.20.40.20.20.20.40.20.20.20.40.2

Christiaens+2019a

Point source or filtered extended signal?

PCA-ASDI

PCA-SADI

Processing of MCFOST model

(log scale)

O B S

Μ

0

D

E

L

Hashimoto+12

L

S

Hashimoto+12

Keppler+18

Forward modeling

PCA-SADI PCA-ASDI

Forward modeling

Synthetic spiral injections

Forward modeling

Synthetic spiral injections

=> PCA-SADI recovers better <u>azimuthally extended structures</u>

Forward modeling

=> PCA-SADI recovers better <u>azimuthally extended structures</u>

Forward modeling

(Mugnier+2009; Cantalloube+2015)

Christiaens+2019a

(Mugnier+2009; Cantalloube+2015)

Pairwise subtraction of frames with ~0.5 FWHM rotation

Christiaens+2019a

(Mugnier+2009; Cantalloube+2015)

Pairwise subtraction Maximum match-filter of frames with in the residual images ~0.5 FWHM rotation 3.5 0.4 3.0 2.5 0.2 2.0 0 1.5 1.0 -0.2 0.5 -0.4 t 0.0 -0.2 0.2 0.4 -0.4 Separation (") Christiaens+2019a

(Mugnier+2009; Cantalloube+2015)

Christiaens+2019b

Christiaens+2019b

Planet only

- * T_{eff}~1100–1500 K
- * log(g)~**3.0–4.0**
- * R_b~2.2–3.3 R_J
- A_V~**3–4 mag**
- * M_b~1.9–42 M_J

$$\chi_r^2 \sim 1.2$$

Christiaens+2019b

	Planet only		Planet+CPD
* * *	T _{eff} ~ 1100–1500 K log(g)~ 3.0–4.0 R _b ~ 2.2–3.3 R J A _V ~ 3–4 mag	* * *	T _{eff} ~ 1500–1600 K log(g)~ 4.0 R _b ~ 1.6 R _J A _V ~ 6–9 mag
***	M _b ~ 1.9–42 M J	* *	M _b ~9.9 M _J M _b ~10 ^{-7.8} –10 ^{-7.3} M _J yr ⁻¹
	$\chi_r^2 \sim 1.2$		$\chi_r^2 \sim 0.4$

Christiaens+2019b

	Planet only		Planet+CPD
* * *	T _{eff} ~ 1100–1500 K log(g)~ 3.0–4.0 R _b ~ 2.2–3.3 R J A _V ~ 3–4 mag	* * *	T _{eff} ~ 1500–1600 K log(g)~ 4.0 R _b ~ 1.6 R _J A _V ~ 6–9 mag
*	M _b ~ 1.9–42 M J	* *	M _b ~9.9 M _J M _b ~10 ^{-7.8} −10 ^{-7.3} M _J yr ⁻¹
	$\chi_r^2 \sim 1.2$		$\chi_r^2 \sim 0.4$

 $\Rightarrow \sim 10 M_{Jup}$ with CPD?

Haffert+2019

Observable	star	b	С
Redshift w.r.t star	/	$\neq 25 \text{ km s}^{-1}$	30 km s ⁻¹
Line width	147 km s ⁻¹	> 123 km s ⁻¹	102 km s ⁻¹
Line shape	inverted P-Cygni	≠ Gaussian	Gaussian

Observable	star		Ь	С
Redshift w.r.t star	/	¥	25 km s ⁻¹	30 km s ⁻¹
Line width	147 km s ⁻¹	>	123 km s ⁻¹	102 km s ⁻¹
Line shape	inverted P-Cygni	¥	Gaussian	Gaussian
<i>b</i> and $c \neq$ residual or reflected stellar light				

С

30 km s⁻¹

102 km s⁻¹

Gaussian

10 AU

- * Why is b shifted in sub-mm and IR?!
 - Star not at centre of the disc?
 - * IR/H α signals trace a jet from the protoplanet? (as protostars; Hartigan+11)
 - * Sub-mm clump traces tip of the spiral?

* Mass?

- * Mass of CPD_b ~ $1.8 3.2 \times 10^{-3} M_{\oplus}$
- * Mass of CPD_c ~ $2.0 4.2 \times 10^{-3} M_{\oplus}$
- * Min Mass of $CPD_{Jup} \sim 6.5 \times 10^{-2} M_{\oplus}$

- (Isella+2019) (Isella+2019)
- (Ward & Canup 2010)

* Min Mass of CPD_{Jup} ~ $6.5 \times 10^{-2} M_{\oplus}$ (Ward & Canup 2010)

=> Most of the CPD mass has been accreted already (almost formed planets)? or CPD dust made mostly of small grains?

What's next?

* Search for Br γ in SINFONI data the same way as H α in MUSE data (on-going)

- * Confirm mass accretion rate inferred with H α (less extinction for Br γ)?
- * Study variability (at different timescales)!

What's next?

* Search for Br γ in SINFONI data the same way as H α in MUSE data (on-going)

- * Confirm mass accretion rate inferred with H α (less extinction for Br γ)?
- * Study variability (at different timescales)!
- Hydro-simulation (with 2 planets)

What's next?

* Search for Br γ in SINFONI data the same way as H α in MUSE data (on-going)

- * Confirm mass accretion rate inferred with H α (less extinction for Br γ)?
- * Study variability (at different timescales)!
- Hydro-simulation (with 2 planets)
- * VLT/ERIS (2020)

=> Better L'-band flux (3.8 μ m) => M-band fluxes (5 μ m)

What's next?

* Search for Br γ in SINFONI data the same way as H α in MUSE data (on-going)

- * Confirm mass accretion rate inferred with H α (less extinction for Br γ)?
- * Study variability (at different timescales)!
- Hydro-simulation (with 2 planets)
- * VLT/ERIS (2020)

=> Better *L'*-band flux (3.8 μ m) => *M*-band fluxes (5 μ m)

* ELT/METIS (2025)
=> mid-IR spectrum (3–20µm)!

		PDS 70 b	
	Christiaens+2019b		Müller+2018
*	a~ 20.9 AU	*	a~ 22.2 AU
		*	e~ 0–0.2
*	T _{eff} ~1500–1600 K	**	T _{eff} ~1000–1600 K
*	log(g)~ 4.0	*	log(g)~ 2.7–4.0
*	R _b ~1.6 R _J	*	R _b ~1.4–3.7 R _J
*	Av~ 6–9 mag	*	A _V = 0 mag
*	M _b ~9.9 M _J	*	M _b ~2–17 M _J

* All clues suggest PDS 70 b and c are authentic accreting protoplanets

* Direct imaging (easier in large gaps) complementary to gas kinematics detections