Influence of grain properties on dust evolution in protoplanetary discs

Jean-François Gonzalez

UB

Dust dynamics

aerodynamic parameter

- Changing grain density
 - composition
 - porosity

Grain composition

Chondrites

- Undifferentiated meteorites
 - chondrules
 - calcium-aluminum rich inclusions (CAIs)
 - metallic grains (Fe+Ni)
 - matrix
- Formation
 - after CAIs (4567.2±0.6 Myr ago)
 - lasted 3 Myr

Derochette2010

MacPherson+Boss2011

Properties of chondrites

Chondrule size

Chondrite composition

Palme+Jones2003

$$(\rho s)_{\text{chondrules}} \sim (\rho s)_{\text{metal}} \sim (\rho s)_{\text{sulphides}}$$

Benoit+1998

 \Rightarrow size-density sorting by gas drag?

Simulations

• SPH 3D two-phase (gas+dust) global simulations

Barrière-Fouchet+2005, Laibe+2008, Gonzalez+2015, Pignatale+2017, Garcia+2018

- Aerodynamic drag
 - self-consistent, grain-size dependent dynamics
 - backreaction of dust on gas
- Grain growth
 - Stepinski & Valageas (1997)
 - compact particles
 - perfect sticking
- Fragmentation
 - when $V_{rel} > V_{frag}$
 - conservative model
- Initial disk model
 - $\Sigma_{\rm g} \propto r^{-p}$
 - $T \propto r^{-q}$

Simulations

Setup

- CTTS disk
 - $M_{rac} = 1 M_{\odot}, M_{disk} = 0.01 M_{\odot}$
 - p = 3/2, q = 3/4
 - $\alpha = 10^{-2}$
- Initial dust/gas ratio
 - $\epsilon_0 = 1\%$, uniform
- Initial grain size
 - $s_0 = 10 \ \mu m$, uniform

- Grain composition
 - ice, silicates, sulfides, iron
- Grain density
 - $\rho_{\rm s}$ = 1, 3.2, 4.6, 7.8 g.cm⁻³
- Size evolution
 - Growth only
 - Growth + fragmentation
 - $V_{\rm frag}$ = 56, 36, 42, 35 m.s⁻¹

Spatial distributions

• Vertical settling

- first density-driven
- then size-driven
- Radial drift
 - efficient chemical sorting

Pignatale+2017

Size-density sorting

Pignatale+2017

Grain porosity

Porosity

Collisional evolution

 $\Omega_{
m K}
ho_{
m s}\phi s$

 $ho_{
m g} c_{
m s}$

 $2\Omega_{\rm K}\rho_{\rm s}\phi s^2$

 $9\mu_{\rm g}$

Okuzumi+2012

- Porous grains are larger \Rightarrow faster growth
- Stokes number
 - Epstein regime: St =
 - Stokes regime: St =

Porosity evolution model

Collisional evolution

Porosity evolution model

Collisional evolution

Porosity evolution model

Kataoka+2013

Simulations

• 1D code

- CTTS disk
 - $M_{rac} = 1 M_{\odot}, M_{disk} = 0.01 M_{\odot}$
 - p = 3/2, q = 3/4
 - $\alpha = 10^{-2}$
- One grain at a time
 - static gas background
- Initial grain size
 - $s_0 = 0.1 \, \mu m$
- Size evolution
 - Growth only
- Prescriptions
 - vertical settling
 - radial drift

• SPH code

- CTTS disk
 - $M_{r} = 1 M_{\odot}, M_{disk} = 0.01 M_{\odot}$
 - *p* = 3/2, *q* = 3/4
 - $\alpha = 10^{-2}$
- Initial dust/gas ratio
 - ϵ_0 = 1%, uniform
- Initial grain size
 - $s_0 = 10 \ \mu m$, uniform
- Size evolution
 - Growth only
 - Growth + fragmentation

Porosity evolution

- Compact only
- Porous, $\phi_0 = 1$

Grain size evolution

Compact

No collective effects

Growth only

Porosity evolution

Garcia+Gonzalez2019

Growth onl

Importance of the Stokes regime

 $\Phi = 1.0$

 $\Phi = 10^{-1}$ $\Phi = 10^{-2}$ $\Phi = 10^{-3}$

 $\Phi = 10^{-4}$

100

Importance of the Stokes regime

Spatial, size and porosity evolution

Growth onl

Spatial and size evolution

Growth + fragmentatio

Porosity evolution

Similar values to pure growth

Conclusion

Multicomponent dust

- fractionation and aerodynamic sorting
- aggregates mimic chondrite properties
- differences in V_{frag} enhance Fe enrichment in inner disk
- Grain porosity accelerates grain growth
 - grains survive the radial-drift barrier
 - can form small planetesimals
 - fragmentation only delays planetesimal formation