

Maxime Lombart Supervisor: Guillaume Laibe

Crédits :S. Andrews (Harvard-Smithsonian CfA); B. Saxton (NRAO/AUI/NSF); ALMA (ESO/NAOJ/NRAO)

SMOLUCHOWSKI EQUATION AND PROTOPLANETARY DISCS

Workshop disc-ussions, 07/19/2019, Monash University

Planetary formation

Blum et al. 1999

- Coagulation : aggregation of monomers into polymers
- Physical process in many fields

- The coagulation process is described mathematically by the <u>Smoluchowski equation</u> (1916).
- Safronov (1969), Friedlander (1977), Silk & Takahashi (1979), Dubovskii (1994), Aldous (1999), Lee (2001), Filbet & Laurencot (2003), Filbet (2008), ...

Marian Smoluchowski

Smoluchowski equation

 Model assumption : coalescence occurs instantly after the collision of two particles, a new sphere is formed.

n: number density of polymers K: collision frequency (Kernel)

$$K_{k,j} = \sigma_{k,j} \Delta v_{k,j}$$

$$\frac{dn_k(t)}{dt} = \frac{1}{2} \sum_{j=1}^{k-1} K_{j,k-j} n_j(t) n_{k-j}(t) - n_k(t) \sum_{j=1}^{\infty} K_{k,j} n_j(t)$$

$$\frac{\partial n(x,t)}{\partial t} = \frac{1}{2} \int_0^x K(y,x-y) n(y,t) n(x-y,t) dy - n(x,t) \int_0^\infty K(x,y) n(y,t) dy$$
x,y: masses

Mass conservation equation.

polymer group with a mass mk

Smoluchowski equation

$$\frac{dn_k(t)}{dt} = \frac{1}{2} \sum_{j=1}^{k-1} K_{j,k-j} n_j(t) n_{k-j}(t) - n_k(t) \sum_{j=1}^{\infty} K_{k,j} n_j(t)$$
$$\frac{\partial n(x,t)}{\partial t} = \frac{1}{2} \int_0^x K(y,x-y) n(y,t) n(x-y,t) dy - n(x,t) \int_0^\infty K(x,y) n(y,t) dy$$

- Non linear integro-differential equation.
- No analytical solution in general case.
- Physical constrains : mass conservation, positivity.
- Astrophysics constrains : any kernels.

Nintendo ™

issue : need to have a fast and efficient algorithm.

- Analytical solution with simple kernels.
- To benchmark algorithms (tests with constant kernel).

Monte-Carlo algorithm (Ormel et al. 2007)

Accuracy for a large number of particles — long calculation time

• Will be useful to compare with non simple kernels.

Brauer et al. 2008 algorithm

Kovetz, Olund 1969, Brauer et al. 2008, Birnstiel et al. 2012

Scheme of the mass distribution of the polymer formed by the collision of i and j.

Brauer et al. 2008 algorithm

Finite volume method

- Equation in conservative form (Tanaka et al. 1996, Filbet & Laurençot 2003, Filbet 2008, Tine 2011, Liu 2019 ...).

$$\partial_t g(x,t) = -\partial_x F_{coag} \left[g\right](x,t)$$

$$F_{coag} \left[g\right](x,t) = \int_0^x \int_{x-u}^\infty \frac{K(u,v)}{v} g(u,t) g(v,t) \, \mathrm{d}u \mathrm{d}v$$

$$F_{coag}\left[g\right]\left(x,t\right) = \int_{0}^{x} \int_{x-u}^{R-u} \frac{K(u,v)}{v} g\left(u,t\right) g\left(v,t\right) \mathrm{d}u \mathrm{d}v \quad \mathsf{F=0} \text{ at } \mathsf{x=R}$$

High-order algorithm

 How can we obtain the accuracy required by PHANTOM
 Discontinuous Galerkin method with at maximum 15 grain sizes ?

- Accuracy is controlled simply.
- Absorption of discontinuities at interfaces.

$$\bigstar \ \partial_t g(x,t) + \partial_x F[g](x,t)) = 0$$

$$\forall \phi \quad \int_{I_{h}} \partial_{t} g(x,t) \phi(\xi(x)) dx + \int_{I_{h}} \partial_{x} F[g](x,t) \phi(\xi(x)) dx = 0$$

$$\forall x \in I_k, \quad g(x,t) \approx g_k(x,t), \quad g_k(x,t) = \sum_i c_k^i(t \phi_i(\xi_k(x))) \quad \text{orthogonal} \\ \text{polynomials}$$

$$\bigstar \int_{I_k} \partial_t g(x,t) \phi(\xi(x)) dx + F[g](x,t)) \phi(\xi(x)) \big|_{\partial I_k} - \int_{I_k} F[g](x,t) \partial_x \phi(\xi(x)) dx = 0$$

$$\bigstar \frac{\Delta x_k}{2} \int_{-1} \vec{\phi}(\xi) \vec{\phi}^T(\xi) d\xi \cdot \frac{d c_k(t)}{dt} + F[g_k](x,t)) \vec{\phi}(\xi_k(x)) \Big|_{\partial I_k} - \int_{I_k} F[g_k](x,t)) \partial_x \vec{\phi}(\xi_k(x)) dx = \vec{0}$$

Brauer algorithm.

High-order algorithm

- Gauss quadrature method integral approximation.
- Discontinuous Galerkin + Gauss quadrature

$$\int_{a}^{b} f(x)\omega(x)dx \approx \sum_{i=1}^{n} \omega_{i}f(x_{i})$$

Optimisations

• Long time solution (Menon & Pego 2006)

$$K(x, y) = (xy)^{\lambda/2}, \quad 0 \le \lambda < 2$$

 $\lim_{t \to +\infty} n(x, t) = \exp(-x)$

• New polynomial basis

ij

F(x) =

d*t*

$$g_{k}(x,t) = \sum_{i} c_{k}^{i}(t)\tilde{\phi}_{i}(\xi_{k}(x),t) \qquad \tilde{\phi}_{i}(\xi_{k}(x),t) = \exp\left(-\frac{a(t)\xi_{k}(x)}{2}\right) L_{a(t),i}(\xi_{k}(x))$$

$$\int_{-1}^{1} \exp(-a(t)\xi)L_{a(t),i}(\xi)L_{a(t),i}(\xi)d\xi = \delta_{ij}$$
Analytical integration $\forall x, g(x,t) \approx \sum_{l=1}^{N} \sum_{i=0}^{k} c_{l}^{i}(t) \phi_{i}\left(\xi_{l}(x)\right) \left[\theta\left(x - x_{l-1/2}\right) - \theta\left(x - x_{l+1/2}\right)\right]$

$$\sum_{l=1}^{N} \sum_{i=0}^{k} c_{l}^{i}(t)c_{i}^{i}(t) \left[\theta\left(x - x_{l-1/2}\right) - \theta\left(x - x_{l+1/2}\right)\right]$$

$$\left[\theta\left(x - x_{l-1/2}\right)\int_{x_{l-1/2}}^{x} \phi_{i}(\xi_{l}(u))\int_{x_{l-1/2}+(x-u-x_{l-1/2})\theta(x-u-x_{l-1/2})}^{x_{l+1/2}+(x-u-x_{l-1/2})\theta(x-u-x_{l-1/2})} \frac{\phi_{i}(\xi_{l}(v))}{v} dvdu - \theta\left(x - x_{l+1/2}\right)\int_{x_{l-1/2}}^{x} \phi_{i}(\xi_{l}(u))\int_{x_{l-1/2}+(x-u-x_{l-1/2})\theta(x-u-x_{l-1/2})}^{x_{l+1/2}+(x-u-x_{l-1/2})\theta(x-u-x_{l-1/2})} \frac{\phi_{i}(\xi_{l}(v))}{v} dvdu$$

• Differential Riccati equation

MOM

• Interface with PHANTOM (D. Mentiplay et D. Price)

```
Files in libsmol.tar.gz:
      – libsmol.a
      - smol2other.f90
      - README
   To use the library compile smol2other.f90 using the same
    compiler that you use
   to compile your hydro code (e.g. using gfortran):
10
        gfortran -c smol2other.f90
11
12 Then, when compiling your program, include the directory with
    smol2other.mod.
13 For example
14
15
        gfortran -c -I$(SMOL_DIR) ...
16
17
   Then, when linking your program, link to libsmol.a and include
    the directory.
18 For example
19
20
        gfortran -o your_program *.o -L$(SMOL_DIR) -lsmol
```

```
1
 2
    ! MODULE: interface with other code
    module smol2other
4
8
9
          module subroutine grain_growth(ndusttypes,dustfrac,grainmass,graindens,dt,mtot,rhogas,temp)
10
11
             integer,
                                                       intent(in)
                                                                    ndusttypes
12
             double precision, dimension(ndusttypes), intent(in)
                                                                    grainmass,graindens
13
                                                                    :: dt,mtot,rhogas,temp
             double precision,
                                                       intent(in)
             double precision, dimension(ndusttypes), intent(inout) :: dustfrac
14
15
          end subroutine grain_growth
16
17
18
19
   end module smol2other
```

Perspectives

- Mathematical optimisations: adapted polynomial basis, binning choice.
- Implicit form for time solver.

• Fragmentation
$$\partial_t g(x,t) = -\partial_x \left(F_{coag}[g](x,t) + F_{frag}[g](x,t) \right)$$

• Simulations with PHANTOM

PHANIUM

Thanks for listening !