FORMATION OF THE TRAPPIST-1 • SYSTEM

- A PEBBLE APPLICATION STORY -

I. METHODOLOGY (MONASH) II. SCIENCE (PALM COVE)

1

I. A (NEW?) LAGRANGIAN MODEL FOR PLANET FORMATION

Chris Ormel, University of Amsterdam

with

Sebastiaan Krijt (Arizona), Djoeke Schoonenberg (Amsterdam)

Disc-ussion workshop, Monash University, Melbourne, Down Under

I. A (NEW?) LAGRANGIAN MODEL FOR PLANET FORMATION

with

Sebastiaan Krijt (Arizona), Djoeke Schoonenberg (Amsterdam)

Disc-ussion workshop, Monash University, Melbourne, Down Under

I. A (NEW?) LAGRANGIAN MODEL FOR PLANET FORMATION

Chris Ormel, Department of Astronomy, Tsinghua University, Beijing, China

with

Sebastiaan Krijt (Arizona), Djoeke Schoonenberg (Amsterdam)

Disc-ussion workshop, Monash University, Melbourne, Down Under

TSINGHUA UNIVERSITY

IIII I THAT

TSINGHUA UNIVERSITY

TSINGHUA UNIVERSITY

Tsinghua Department of Astronomy (DoA)

- rapidly expanding
- opportunities for PD and faculty positions

please, visit!

GOAL

Present a planet system formation model from A-Z

- evolutionary timescales
- model entire planet formation process dust -> pebbles -> planetesimals -> planets
- Lagrangian representation dust composition, coupling to N-body

KRIJT'S BATCH METHOD

Krijt, Ormel, Dominik, Tielens (2016)

Lagrangian:

 $\frac{Dm}{Dt} = \frac{m}{t_{\text{grow}}},$ and radial drift $\frac{Dr}{Dt} = -\frac{r}{t_{\text{drift}}},$

Idea: follow lifeline of batches.

- disk radius
- mass (characteristic size)
- composition, porosity

t_{drift}=f(m,r,t)

 $t_{growth}=f(m,r,t, \Sigma)$

KRIJT'S BATCH METHOD

Krijt, Ormel, Dominik, Tielens (2016)

RESULTS

Krijt et al. (2016) – compact models. Note: size is not shown!

RESULTS

Krijt et al. (2016) – compact models. Note: size is not shown!

• in (a) we get strong nileun similar to Youdin & Shu (2002)

RESULTS

Kriit et al. (2016) – porous models. Note: size is not shown!

SCHOONENBERG'S SPH METHOD

Schoonenberg, Ormel, & Krijt (2018)

r

- particles different mass, compositions
- 5 particles in the support Kernel
- resample when relative distance exceeds 20%

PLANETESIMAL FORMATION

- no pressure bumps
- rapid evolution
- pileup interior to snowline but dust:gas>1 not reached
- planetesimals form at iceline Schoonenberg & Ormel (2017)

further evolution not followed

PLANETESIMAL FORMATION

- no pressure bumps
- rapid evolution
- pileup interior to snowline but dust:gas>1 not reached
- planetesimals form at iceline Schoonenberg & Ormel (2017)

further evolution not followed

PLANETESIMAL FORMATION

- no pressure bumps
- rapid evolution
- pileup interior to snowline but dust:gas>1 not reached
- planetesimals form at iceline Schoonenberg & Ormel (2017)

further evolution not followed

FINDINGS

Schoonenberg, Ormel, & Krijt (2018)

model for first "burst" of planetesimal formation

- rapid disk evolution -> rapid formation
- planetesimals tend to form preferentially near snowline
- efficient for high Z, around low mass stars

We have coupled three codes:

- L-code
- N-code
- A-code

We have coupled three codes:

• L-code

-> Lagrangian code for evolution of dust/pebbles, planetesimal formation

- N-code
- A-code

We have coupled three codes:

- L-code
- N-code
 - -> N-body code for selfcoagulation of
 planetesimals, pebble
 accretion
- A-code

Schoonenberg et al. (2019) – N-body calculation

We have coupled three codes:

- L-code
- N-code
- A-code

-> Analytical code for pebble accretion efficiencies

We have coupled three codes:

- L-code
- N-code
- A-code
- Caveats:
- No connection to star formation phase
- No link to final dynamics

II. FORMATION OF THE TRAPPIST-1 SYSTEM

CHRIS ORMEL

University of Amsterdam

with

Djoeke Schoonenberg (Amsterdam) Beibei Liu (Lund) Caroline Dorn (Zürich)

II. FORMATION OF THE TRAPPIST-1 SYSTEM

CHRIS ORMEL

University of Amsterdam

Department of Astronomy, Tsinghua University, Beijing, China

with **Djoeke Schoonenberg** (Amsterdam) **Beibei Liu** (Lund) **Caroline Dorn** (Zürich)

TRAPPIST I SYSTEM

- M8 dwarf, 12.1 pc, mass = 0.09 M_{sun}, age = 7.6 +- 2.2 Gyr
 Van Goortel (2017), Burgasser & Mamajek (2017)
- 7 planets, all around 1 Earth radius
- compact; 0.01 0.07 au
- resonances, many close to 3:2

COMPOSITION

Mass-radii relationships indicate:

- planets lie above the rock line
- moderate H₂O fraction (~10%)
 Dorn et al. (2018)

Properties hard to explain with "standard" planet formation scennarios

COMPOSITION

Mass-radii relationships indicate:

- planets lie above the rock line
- moderate H₂O fraction (~10%)
 Dorn et al. (2018)

Properties hard to explain with "standard" planet formation scennarios

CLASSICAL FORMATION SCENARIOS

IN SITU SCENARIO

- requires an unusually massive disk (unstable)
- no (easy) explanation for ice contents planets
- no resonances

CLASSICAL FORMATION SCENARIOS

IN SITU SCENARIO

- requires an unusually massive disk (unstable)
- no (easy) explanation for ice contents planets
- no resonances

MIGRATION SCENARIO

- formation time long
- expected composition icy

PEBBLE-DRIVEN FORMATION

Ormel, Liu, Schoonenberg (2017)

large disk; dust growth to pebbles; drift to inner disk

see Birnstiel et al. (2012), Lambrechts & Johansen (2014) cf. inside-out formation by Chatterjee & Tan (2017)

dry pebble accretion

- icy pebbles cross snowline
- H₂O vapor diffuses back across snowline
- midplane dust:gas=1 exceeded
- planetesimal formation at iceline by streaming instability (Schoonenberg & Ormel 2017)

- icy pebbles cross snowline
- H₂O vapor diffuses back across snowline
- midplane dust:gas=1 exceeded
- planetesimal formation at iceline by streaming instability (Schoonenberg & Ormel 2017)

- icy pebbles cross snowline
- H₂O vapor diffuses back across snowline
- midplane dust:gas=1 exceeded
- planetesimal formation at iceline
- planetesimals coagulate (wet accretion) The water contents is set (Schoonenberg et al. in prep)

pebble isolation

- icy pebbles cross snowline
- H₂O vapor diffuses back across snowline
- midplane dust:gas=1 exceeded
- planetesimal formation at iceline
- planetesimals coagulate (wet accretion)
- migration and accretion of dry pebbles
 H O fraction decreases

- icy pebbles cross snowline
- H₂O vapor diffuses back across snowline
- midplane dust:gas=1 exceeded
- planetesimal formation at iceline
- planetesimals coagulate (wet accretion)
- migration and accretion of **dry** pebbles
- accretion ceases at *pebble isolation mass* h³M★

Lambrechts et al. (2014), Atteiee et al (2018), Bitsch et al. (2018)

The process repeats

- icy pebbles cross snowline
- H₂O vapor diffuses back across snowline
- midplane dust:gas=1 exceeded
- planetesimal formation at iceline
- planetesimals coagulate (wet accretion)
- migration and accretion of **dry** pebbles
- accretion ceases at *pebble isolation mass* h³M★
 - 7 planets form; end up in resonances migration stall at the magnetospheric cavity radius r_c

- icy pebbles cross snowline
- H₂O vapor diffuses back across snowline
- midplane dust:gas=1 exceeded
- planetesimal formation at iceline
- planetesimals coagulate (wet accretion)
- migration and accretion of **dry** pebbles
- accretion ceases at *pebble isolation mass* h³M★
 - 7 planets form; end up in resonances
 - Planets re-arrange after disk dispersal

Schoonenberg, Liu, Ormel, Dorn (2019)

Schoonenberg et al. (2019) – model overview

Developed an integrated numerical model combining three codes:

- a Lagrangian code for the dust/pebbles
 Schoonenberg et al. (2018)
- an N-body code for the planetesimal dynamics/coaguation at the snowline Liu et al. (2019)
- an Analytical code to calculate

Schoonenberg, Liu, Ormel, Dorn (2019)

Developed an integrated numerical model combining three codes:

- a Lagrangian code for the dust/pebbles
 Schoonenberg et al. (2018)
- an N-body code for the planetesimal dynamics/coaguation at the snowline Liu et al. (2019)
- an Analytical code to calculate

Single (initial) burst of planetesimal formation, quick spreading

A **V-shape** in the H2O mass fraction of the planets

PARAMETER STUDY

	Model description	$\sum M_{pl} \; [M_{\oplus}]$	$M_{SI} \; [M_\oplus]$	$\overline{M_{pl}}$ $[M_{\oplus}]$	$\overline{f_{\rm H_2O}}$
1.	Fiducial (see Table 1)	9.3 ± 0.08	1.4 ± 0.02	1.74 ± 0.89	0.10 ± 0.05
2.	With a pebble isolation mass of 1 M_{\oplus}	5.5 ± 0.56	1.4 ± 0.02	0.84 ± 0.29	0.19 ± 0.08
3.	Larger initial pltsml size (1500 km)	9.3 ± 0.2	1.4 ± 0.04	1.84 ± 0.92	0.10 ± 0.05
4.	Smaller initial pltsml size (1000 km)	9.4 ± 0.08	1.4 ± 0.03	1.74 ± 0.73	0.10 ± 0.05
5.	$\alpha = 5 \times 10^{-4}$	14.8 ± 0.06	5.9 ± 0.01	0.67 ± 0.28	0.39 ± 0.09
6.	$\alpha = 2 \times 10^{-3}$	8.7 ± 0.17	1.5 ± 0.01	1.43 ± 0.71	0.14 ± 0.05
7.	$\dot{M}_{\rm gas} = 5 \times 10^{-11} \ {\rm M}_{\odot} \ {\rm yr}^{-1}$	10.8 ± 0.46	3.0 ± 0.01	1.06 ± 0.50	0.16 ± 0.09
8.	$\dot{M}_{\rm gas} = 2 \times 10^{-10} \ {\rm M}_{\odot} \ {\rm yr}^{-1}$	7.1 ± 0.1	1.4 ± 0.04	1.57 ± 0.93	0.13 ± 0.06
9.	Higher disk mass ($r_{out} = 300 \text{ au}$)	14.5 ± 0.49	1.4 ± 0.03	2.56 ± 1.53	0.07 ± 0.05
10.	Lower disk mass ($r_{out} = 100 au$)	4.3 ± 0.04	1.3 ± 0.02	1.10 ± 0.49	0.17 ± 0.05
TRAPPIST-1	UCM model, Dorn et al. (2018)	$5.66^{+0.65}_{-0.61}$		0.95 ± 0.26	0.10 ± 0.05

H₂O FRACTION ~10% IS SPECIAL

- too much to change by delivery, evaporation
- hard to understand from theory
- ... but result strongly depends on TTV measurement/modeling!

• H₂O fraction ~10% special

PLANETS FORM VERY FAST (~10⁵ YR)

- Observational evidence for early formation?
- Fast disk clearing (Sheehan & Eisner 2017, Tychoniec et al. 2018, Manara et al. 2018)

- H₂O fraction ~10% special
- Planets form very fast (~10⁵ yr)

SCENARIO APPLICABLE TO LOW MASS STARS?

- many close-in planets around M-stars (Mulders et al. 2015)
- Pebble accretion efficient for low-mass stars (Ormel & Liu et al. 2018)
- Scenario aided by lack of an outer giant planet

- H₂O fraction ~10% special
- Planets form very fast (~10⁵ yr)
- Scenario applicable to low mass stars

SCENARIO APPLICABLE TO SOLAR-TYPE STARS?

- Kepler systems are thermal mass M ~ h³ M★ (Wu 2018)
- intra-system uniformity natural outcome of our model

Ormel et al. (2017)

- H₂O fraction ~10% special
- Planets form very fast (~10⁵ yr)
- Scenario applicable to low mass stars
- Intra-system uniformity natural

THANK YOU