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dust radial drift

CARMA 0.17”x0.13’’ 
Kwon+2011 



disk substructures: prevent inward radial drift

ALMA 0.03” 
ALMA Partership+2015 



see, e.g., Perez+2015; van der Marel+2013; Loomis+2017; Cazzoletti+2018
Isella+2016; Andrews+2016; Clark+2018; van Terwisga+2018; DSHARP 

one prominent bias: targeting bright disks 

disk substructures with ALMA
• azimuthal asymmetry
• concentric gaps and rings 



A unbiased(-ish) representative ALMA Disk Structure Survey in Taurus   

Sample Selection: 
•  spectral type earlier than M3
•  excluding binaries of 0.1”-0.5’’
•  low extinction (Av<3)
•  no archival high-resolution (<0.2”) 

observations

Snapshots of 32 disks: 
•  1.3 mm + 13CO + C18O
•  4-10 min on-source time
•  beam of 0.12’’ (~15 au)

wide range of  
disk brightness 
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mm continuum images for 32 disks at ~15 au resolution 

in order of decreasing mm flux
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12/32 disks with substructures (rings, gaps, inner cavities)

•  Axisymmetric rings are the most common type of substructures 
 
•  Spirals and high-contrast azimuthal variations are rare, not seen in our data 

Long, Pinilla, Herczeg et al. 2018 single ring / multiple rings / inner cavities 



gap/ring properties

•  gaps are distributed from 20 —120 au  

•  many narrow gaps, marginally resolved  

•  gap location & gap width weakly correlated 

gap location [au]
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disk morphology fitting in the visibility plane 
with Galario (Tazzari+2018) 

Long et al. 2018



Are these substructures related to ice lines?

dashed line: temperature profile 
red line: intensity profile 

shaded regions: expected ice line locations 
symbols: gap locations 

# Not all gaps have their matched ice lines;
ice lines are unlikely to be a universal mechanism in creating gaps and rings

(see also Huang+2018, van der Marel+2019) 

Long et al. 2018



model structure with hydro, RT 

Deep gap (contrast of a factor of ~30) 
consistent with a 2 MJ planet

What if the gaps are carved by young planets?
(Liu, Dipierro, Ragusa et al. 2019)

MWC 480



gap-inferred planet population  

assuming gap width corresponds to   
4-7 times planet Hill radius  

•  If gaps are carved by planets, these planets 
are most likely to be low mass planets (e.g., 
Neptunes)

•  Gap-inferred young planet population has no 
discrepancy with current exoplanet statistics

•  May migrate inward from present location?

What if the gaps are carved by young planets?
(Lodato et al. 2019)

Zhang et al. 2018: DSHARP
Bae et al. 2018: compilation from archival gaps
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12 disks with 
substructures

12 smooth disks
 in single stars

8 smooth disks
 in binaries (0.7’’ — 4’’)

(well described by  
a tapered power-law) 

ring disks vs. smooth disks



ring disks vs. smooth disks

12 disks with 
substructures

12 smooth disks
 in single stars

8 smooth disks
 in binaries (0.7’’ — 4’’) Stellar Mass
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rings      smooth singles       smooth binaries

Long et al. 2019

(well described by  
a tapered power-law) 



12 disks with 
substructures

12 smooth disks
 in single stars

8 smooth disks
 in binaries (0.7’’ — 4’’)

disk radial profile comparison

disks with substructures are 
more extended 

(not a brightness difference) 
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Long et al. 2019

(well described by  
a tapered power-law) 



dust disk size comparison

smooth binaries       
smooth singles                             rings       

•  disks in our sample with spatial 
extents larger than 55 au all 
show detectable substructures 

•  Initial conditions or radial drift/
dust evolution? 
 (see also Facchini, Rosotti talks) 
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Disk Radius (95% encircled flux)
Long et al. 2019



DSHARP

Huang+2018 

•  any hidden substructures in the 
inner disks should be low-contrast 
or very narrow (requires very high-
spatial resolution) 

smooth binaries       
smooth singles                             rings       

dust disk size comparison

Disk Radius (95% encircled flux)
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dust disk size - luminosity relation

•  disk luminosity roughly scales with 
the disk surface area (Tripathi
+2017, Andrews+2018) 

•  optically thick disks with various 
filling factors?  

smooth binaries       
smooth singles                             rings       



truncation of disks by companions

•  dust disks in multiple systems are smaller 
•  outer edge sharper (radial drift, Birnstiel & Andrews 2014) 
•  consistent with tidal truncation only if orbital 

eccentricities are high (>0.5) 
•  caveat:  looking at dust, not gas 

Taper power law
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Take-home Messages

• disk substructures are common, especially in large disks (seen 
in more than 1/3 of our sample)

• the most common type of substructures are axisymmetric rings 
and gaps

• very narrow substructures may present in the compact smooth 
disks

• compact smooth disks are likely optically thick

• Compact disks:  lack ring at large radius, not a brightness effect


