ENRIQUE MACIAS (Boston University)

MULTI-WAVELENGTH CHARACTERIZATION OF RING SUBSTRUCTURES IN HD 169142

Catherine Espaillat, Mayra Osorio, Guillem Anglada, José M. Torrelles, Carlos Carrasco-González, Mario Flock, Hendrik Linz, Gesa Bertrang, Thomas Henning, José F. Gómez, Nuria Calvet, Bill Dent

DISK SUBSTRUCTURES IN THE PLANET FORMATION PARADIGM

Disk substructures are mostly ubiquitous (e.g., talks by J. Huang, G. Herczeg, L. Pérez).

- Could be a key piece of the dust evolution process:

i.e., pressure bumps to trap the dust.

Solution: non-smooth gas distributions

ARE SUBSTRUCTURES THE SMOKING OF DUST TRAPS?

Substructures

Dust trap

bump

Planet-disk interaction (e.g., Zhu et al. 2014).

MHD effects (e.g., Flock et al. 2015)

Grain growth across snowlines (e.g., No pressure Pinilla et al. 2017) Dust sintering (Okuzumi et al. 2016)

THE ORIGIN AND ROLE OF DISK SUBSTRUCTURES

- Are disk substructures the smoking gun of dust traps? Are substructures enhancing the dust growth?

Characterizing dust content of substructures is key to understand their origin and role.

Multi-wavelength observations in the (sub-)mm

HD 169142

Pohl et al. (2017)

ALMA

Macias et al. (2017)

MULTI-WAVELENGTH ALMA OBSERVATIONS

New band 3 (3 mm) observations. Angular Resolution ~0.1 arcsec (~12 au)

Archival band 7 (0.89 mm) and 6 (1.3 mm) data.

LTI-WAVELENGTH ANALYSIS

Dust opacity: $\kappa_{\nu} \propto \nu^{\beta} \quad \begin{bmatrix} \beta \sim 1.6 - 1.8 & \text{ISM-size} \\ \beta \sim 0 - 1 & \text{mm/cm} \end{bmatrix} \longrightarrow \tau_{\nu}[r] = \tau_0[r] \left(\frac{\nu}{\nu_0}\right)^{\beta[r]}$

Gray body:

Spectral behavior of dust opacity depends on the dust particle size distribution.

 $I_{\nu}[r] = B_{\nu}(T_d[r]) \ (1 - e^{\tau_{\nu}[r]})$

MULTI-WAVELENGTH ANALYSIS

Dust opacity: $\kappa_{\nu} \propto \nu^{\beta} \begin{bmatrix} \beta \sim 1.6 - 1.8 \text{ ISM-size} \\ \beta \sim 0 - 1 \text{ mm/cm} \end{bmatrix} \longrightarrow \tau_{\nu}[r] = \tau_{0}[r] \left(\frac{\nu}{\nu_{0}}\right)^{\beta[r]}$

Gray body:

 $T_d[r]$ — Power law $\tau_0[r] \quad \beta[r] \longrightarrow$ Power law + 3 rings

Spectral behavior of dust opacity depends on the dust particle size distribution.

$$I_{\nu}[r] = B_{\nu}(T_{d}[r]) (1 - e^{\tau_{\nu}[r]})$$

+ inclination, PA, position offsets

RINGS AS ACCUMULATIONS OF PEBBLES

The three rings are reproduced with increases in optical depth and decreases in beta — accumulations of large dust grains.

RINGS AS ACCUMULATIONS OF PEBBLES

- The three rings are reproduced with increases in optical depth and decreases in beta accumulations of large dust grains.
- We can discard snowlines as a main driver of substructures.
- Rings are likely associated with pressure bumps.
- Disk probably harbors multiple giant planets (Pohl et al. 2017; Bertrang et al. 2018).

Macias et al. in press

11

DUST PARTICLE SIZE DISTRIBUTION

Dust opacities as in DSHARP (Birnstiel et al. 2018) and $n(a) \propto a^{-p}$

DUST PARTICLE SIZE DISTRIBUTION

Dust opacities as in DSHARP (Birnstiel et al. 2018) and $n(a) \propto a^{-p}$

Max grain size: a_{max}

Size distribution slope: p

Dust surface density: Σ_d

- Dust mass = 160^{+250}_{-90} M_{\oplus}
- Maximum grain size: 2 mm 20 cm P = 3.5 in gaps (ISM-like)

INNER RING HARBORS A STRONG BUILD-UP OF LARGE PARTICLES

Macias et al. in press

SUMMARY & CONCLUSIONS

- ALMA ~0.1" (~12 au) data at 0.89 mm, 1.3 mm, and 3 mm of HD 169142.
- Discard: snowlines as the origin of main substructures in HD 169142.
- Confirm: substructures are associated with pressure bumps trapping large particles: potential sites for further planetesimal formation.
- Inner ring might contain appropriate conditions for streaming instability.
- Future prospects:
 - More targets.
 - More resolution: Cycle 6 ~0.05" @ 3 mm (PI: Macias).
 - (More) scattering.
 - More wavelengths: VLA.

