The Masses and Origins of Directly Imaged (Exo)-Planets

Kevin Wagner University of Arizona / NSF+NExSS

GREAT BARRIERS IN PLANET FORMATION - PALM COVE, AUSTRALIA - JULY 23, 2019

+ Bonus Material on MWC 758

NASA

How do giant planets form? **Core Accretion and/or Gravitational Instability?**

Alan Brandon/Nature

CA: Pollack+1996, Mordasini+2009,2012

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

Different Timescales, Challenges, Resulting Populations

GI: Boss 1997, Kratter+2010, 2016 review, Forgan+2018

Population Synthesis of Gl vs. CA: Top vs. Bottom Heavy Mass Distributions

GI: Forgan+2018

The Mass Function is a Clear Diagnostic of the Dominant Formation Mechanism

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

Mordasini+2009

"THE MASS FUNCTION, MULTIPLICITY, AND ORIGINS OF WIDE-ORBIT GIANT PLANETS"

Wagner, Apai, Kratter 2019, ApJ

Conventional approach:

1. carry out a survey

2. assume a mass function and radial profile
1
3. compare predictions with survey results

(Metchev & Hillenbrand 2009, Galicher et al. 2016, Vigan et al. 2017, Stone et al. 2018, Nielsen et al. 2019 etc.)

4. link results to formation scenarios

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

2019, ApJ <u>arXiv:1904.04638</u>

Our new approach:

1. measure the *relative companion* mass function (CMF) directly from the detections of past surveys

2. use survival analysis estimate the correction for biases at low masses from the detection limits*

3. estimate multiplicity from CMF+detection limits

*enabled by very deep follow-up observations

Defining our Sample

Publications of the Astronomical Society of the Pacific, 128:102001 (38pp), 2016 October © 2016. The Astronomical Society of the Pacific. All rights reserved. Printed in the U.S.A.

OPEN ACCESS

Imaging Extrasolar Giant Planets

Brendan P. Bowler McDonald Observatory and the University of Texas at Austin, Department of Astronomy, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; bpbowler@astro.as.utexas.edu Received 2016 March 18; accepted 2016 May 8; published 2016 August 29

High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planetfinding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of largescale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (\approx 5–300 Myr) stars spanning stellar masses between 0.1 and 3.0 M_{\odot} , the overall occurrence rate of 5–13 M_{Jup} companions at orbital distances of 30–300 au is $0.6^{+0.7}_{-0.5}$ % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around $2.8^{+3.7}_{-2.3}$ % of BA stars, <4.1% of FGK stars, and <3.9% of M dwarfs. Looking forward, extreme AO systems and the next generation of ground- and space-based telescopes with smaller inner working angles and deeper detection limits will increase the pace of discovery to ultimately map the demographics, composition, evolution, and origin of planets spanning a broad range of masses and ages. Key words: planets and satellites: detection – planets and satellites: gaseous planets Online material: color figures

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

doi:10.1088/1538-3873/128/968/102001

Abstract

Bowler 2016, PASP

						₩				•
Exoplanet.eu				Home Al	Catalogs	Diagrams	Bibliography	Research Meetin	gs Other Sites	VO
VO CONNECTION 3									OFF ON	
Catalog 💿								Download VO	Table CSV DAT	Г
Status - Detection Radial Showing 116 planets Microl	velocity ensing	3 multiple p	olanet syster	ns				2	Filter All fields	
Show 100 \$ entries Prima	ng rv Transit					Planet	Search	Sh	ow / hide columns	
Planet Astron	netry	tadius (R _{Jup})	Period (day)	a (AU)	е	<i>i</i> (deg)	Ang. dist. (arcsec)	Discovery	Update	
11 Oph b Other	dany Transit		730000	243			1.675862	2007	2018-06-18	
1RXS 1609 b	uary fransic	1.7	—	330	—	_	2.275862	2008	2018-11-15	
2M 0103-55 (AB) b	13	-	—	84	—	—	_	2013	2016-02-23	
2M 0122-24 b	20	1	—	52	—	—		2013	2016-02-23	
2M 0219-39 b	13.9	1.44	—	156	—	—		2015	2016-02-23	
2M 0441+23 b	7.5	—	—	15	—	—	0.107143	2010	2016-02-23	
2M 0746+20 b	12.21	0.97	4640	2.897	0.487	138.2	0.237265	2010	2018-10-04	
2M 2140+16 b	20	0.92	7340	3.53	0.26	46.2	0.1412	2010	2012-01-20	
2M 2206-20 b	30	1.3	8686	4.48	0	44.3	0.167979	2010	2012-01-20	
2M 2236+4751 b	12.5	_	_	230	_	_	3.7	2016	2016-11-03	
2M J2126-81 b	13.3	—	—	6900	—	—	_	2016	2016-02-23	
2M1207 A	60	—	—	42	_	_		2004	2018-09-16	

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

Defining our sample

Cross-checking our sample

N N	NASA EXOPLANET ARCHIVE NASA EXOPLANET SCIENCE INSTITUTE											
	Home About Us	Data	Tools	Support Lo	gin							
	Select Columns 🔚 Download Table 🕖 Plot Table 🔎 View Documentation User Preferences											
	Confirmed Planets											
		A 🛛 🔀				A 🛛 🛛		A 🗹 🔀	A 🗹 🔀	A 🛛 🔀		
	Host Name	Planet Letter	Planet Name	Discovery Method	Number of Planets in System	Orbital Period [days]	Orbit Semi-Major Axis [AU]	Eccentricity	Planet Mass or M*sin(i) [Jupiter mass]	Planet Mass or M*sin(i) Provenance	Planet Radius [Jupiter radii]	Planet D [g/cm*
	?	2	?	Imaging 🛛	2	?	?	?	?	?	?	
\checkmark	1RXS J160929.1-210524 0	b	1RXS J160929.1-	Imaging	1		330		8±1	Mass		
\checkmark	2MASS J01225093-2439505 0	b	2MASS J0122509	Imaging	1		52±6		24.5±2.5	Mass		
\checkmark	2MASS J02192210-3925225 0	b	2MASS J0219221	Imaging	1		156±10		13.9±1.1	Mass	1.44±0.03	
\checkmark	2MASS J04414489+2301513 0	b	2MASS J0441448	Imaging	1		15.0		7.5±2.5	Mass		
\checkmark	2MASS J12073346-3932539 0	b	2MASS J1207334	Imaging	1	+1024 5	46±5		4±1	Mass	+0.30	
\checkmark	2MASS J21402931+1625183 A 🕕	b	2MASS J2140293	Imaging	1	7336.5 -584.0		0.26±0.06	20.95 ^{+83.79} -20.95	Mass	0.92 +0.39 -0.36	
\checkmark	2MASS J22362452+4751425 0	b	2MASS J2236245	Imaging	1		230±20		12.5±1.5	Mass		
\checkmark	51 Eri 🕕	b	51 Eri b	Imaging	1		13.2±0.2		2	Mass		
\checkmark	AB Pic 0	b	AB Pic b	Imaging	1		260		13.5±0.5	Mass		
\checkmark	CFBDSIR J145829+101343 0	b	CFBDSIR J14582	Imaging	1	10037.5±2737.5	2.6±0.3		10.5±4.5	Mass		
\checkmark	CHXR 73 🕕	b	CHXR 73 b	Imaging	1		210		12.569 ^{+8.379} -5.237	Mass		
\checkmark	CT Cha 🕕	b	CT Cha b	Imaging	1		440		17±6	Mass	2.20 +0.81 -0.60	
\checkmark	DH Tau 🕕	b	DH Tau b	Imaging	1		330		11 ⁺¹⁰ ₋₃	Mass		
\checkmark	FU Tau 🕕	b	FU Tau b	Imaging	1	. 10 1000	800		16	Mass		
\checkmark	Fomalhaut 🕕	b	Fomalhaut b	Imaging	1	555530 ⁺¹⁸⁴⁶⁹⁰ ₋₃₅₃₃₂₀	160 ⁺³³ ₋₇₉	0.87 +0.11				
\checkmark	GJ 504 🕕	b	GJ 504 b	Imaging	1		43.5		4.0 ^{+4.5} _{-1.0}	Mass		
\checkmark	GQ Lup 🕕	b	GQ Lup b	Imaging	1		100		20	Mass	3.0±0.5	
\checkmark	GSC 06214-00210 🕕	b	GSC 06214-0021	Imaging	1		320±30		16±1	Mass		
\checkmark	GU Psc 🕕	b	GU Psc b	Imaging	1		2000±200		11.3±1.7	Mass	1.265±0.115	
\checkmark	HD 100546 🕕	b	HD 100546 b	Imaging	1		53±2				6.9 ^{+2.7} _{-2.9}	
\checkmark	HD 106906 🕕	b	HD 106906 b	Imaging	1		650		11±2	Mass		
\checkmark	HD 203030 🕕	b	HD 203030 b	Imaging	1		487.1±1.8		24.090 +8.379 -11.521	Mass		
\checkmark	HD 95086 🕕	b	HD 95086 b	Imaging	1		55.7±2.5		5±2	Mass		
\checkmark	HIP 65426 0	b	HIP 65426 b	Imaging	1		92		9.0±3.0	Mass	1.5±0.1	
\checkmark	HIP 78530 🕕	b	HIP 78530 b	Imaging	1		740±60		23±1	Mass		
	HN Peg 0	b	HN Peg b	Imaging	1		773±+13		21.9987±9.42803	Mass	1.05066 +0.136197 -0.0583702	
\checkmark	HR 2562 🕕	b	HR 2562 b	Imaging	1		20.3±0.3		30±15	Mass	1.11±0.11	

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

https://exoplanetarchive.ipac.caltech.edu/

Cross-checking our sample

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

Methodology and FAQ

Exoplanets Links

2996

2520

California Planet Survey

Table

Plots

Total Confirmed 3021 Planets

imaged planets

EOD Planets

Database

in the Exoplanet Orbit

Other Planets

Including microlensing and

Planets with good orbits listed

Unconfirmed Kepler Candidates

Total Planets

Confirmed planets + Kepler Candidates

Potentially useful aside: <u>exoplanet.eu</u> was the most complete, <u>exoplanets.org</u> was the least complete

Exoplanet.eu`

VO CONNECTION

Catalog 📀

Status -	Detec	ction -								Filter
Showing 116 planets Show 100 \$ entries	Radial Pulsar Microl Imagi Prima	l Velocity ensing ng ry Transit	ን multiple ן	olanet system	IS		Planet S	Search	Sho	All fields
Planet	AstrorTTV	netry	tadius (R _{Jup})	Period (day)	a (AU)	е	<i>i</i> (deg)	Ang. dist. (arcsec)	Discovery	Update
11 Oph b	Other	dow Tropoit	-	730000	243		_	1.675862	2007	2018-06-18
1RXS 1609 b	Secon	idary Transit	1.7	—	330		—	2.275862	2008	2018-11-15
2M 0103-55 (AB) b		13		—	84	—	—	—	2013	2016-02-23
2M 0122-24 b		20	1	_	52		—	—	2013	2016-02-23
2M 0219-39 b		13.9	1.44	—	156	—	—	—	2015	2016-02-23
2M 0441+23 b		7.5	—	_	15		_	0.107143	2010	2016-02-23
2M 0746+20 b		12.21	0.97	4640	2.897	0.487	138.2	0.237265	2010	2018-10-04
2M 2140+16 b		20	0.92	7340	3.53	0.26	46.2	0.1412	2010	2012-01-20
2M 2206-20 b		30	1.3	8686	4.48	0	44.3	0.167979	2010	2012-01-20
2M 2236+4751 b		12.5			230			3.7	2016	2016-11-03
2M J2126-81 b		13.3	—	—	6900	—	—		2016	2016-02-23
2M1207 A		60	—	—	42				2004	2018-09-16

N=57 companions (as of February 2019)

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

		X	- I - I			- •
Home	All Catalogs	Diagrams	Bibliography	Research Me	etings Other Sites	VO
					OFF ON	
				Download V	VOTable CSV DA	т
				0	Filter	
ems				_	All field	5
		Planet	Search		Show / hide columns	
: (AU	a e))	<i>i</i> (deg)	Ang. dist. (arcsec)	Discovery	Update	
2	43 —	_	1.675862	2 200	2018-06-18	\$

Converting Photometry to Mass Probability Distributions

Age

Mass

Color (in chart) = K-band Photometric Magnitude

MC Simulation over measurement uncertainties, thousands of trials

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

Inputs: age, distance, photometry - evolutionary model (initial conditions + cooling curve)

Final Mass Distributions

and Mass Detection **Limit Distributions**

Estimating the mass function from detections alone

Wagner, Apai, & Kratter 2019

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

Derivative gives the relative mass function, or companion mass function (CMF)

Inflection points: changes in the observed frequency

Problems: unphysical starting point at zero near 1-2 MJup (detection limit floor, observational bias)

Feigelson+Nelson 1985.

Comparison to Population Synthesis and Inner Planets

- Good match to CA pop. synth. (black dashed) models, and RV planets (black solid)
- Over-abundance of higher mass brown dwarfs: some instability-born companions
- Possibility to assign a probability of formation based on an object's mass

Comparison to Population Synthesis and Inner Planets

- Good match to CA pop. synth. (black dashed) models, and RV planets (black solid)
- Over-abundance of higher mass brown dwarfs: some instability-born companions
- Possibility to assign a probability of formation based on an object's mass

Takeaway: the mass function is rising steeply toward smaller masses

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

Multiplicity Among the Directly Imaged Planets

- Assume that each system has a second planet whose mass is drawn independently from the CMF
- P = the probability that a second planet would be a) a super-Jupiter (>2 MJup), and b) beneath the current detection limit
- Many systems are consistent with hosting one or more additional super-Jupiters (mean = 68%).
 - PDS 70 has since had a second planet discovery (Haffert+2019)

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION: 2019

TABLE PROBABILITIES

System	P(Double) %	P(Triple) %	P(Quad)
51Erib	34.1	11.6	3.97
GJ504b	77.9	60.7	47.3
GJ758b	85.6	73.3	62.7
HD1160B	79.1	62.6	49.5
HD19467b	94.1	88.5	83.3
HD206893b	84.2	70.9	59.7
HD4113C	89.3	79.7	71.2
HD95086b	40.9	16.7	6.84
HD984b	76.2	58.1	44.2
HIP65426b	53.3	28.4	15.1
$\operatorname{HIP73990b}$	100.	79.6	63.4
$\mathrm{HIP74865b}$	74.3	55.2	41.0
$\mathrm{HR2562b}$	68.3	46.6	31.9
m HR3549b	60.8	37.0	22.5
HR8799b	100.	100.	100.
PDS70b	65.7	43.2	28.4
\mathbf{PZTelb}	48.4	23.4	11.3
$\operatorname{BetaPicb}$	22.5	5.06	1.14
KappaAndb	40.8	16.6	6.79
Mean	68.2%	50.4%	39.5%

NOTE. — Note: this table also serves to identify the companions that were considered as part of our primary analysis (those within 100 AU of A0-K8 stars), and is a subset of the objects whose properties are described Table 2.

TABLE 1 MULTIPLICITY PROBABILITIES

System	P(Double) $\%$	P(Triple) %	P(Quad) %
51Erib	34.1	11.6	3.97
GJ504b	77.9	60.7	47.3
GJ758b	85.6	73.3	62.7
HD1160B	79.1	62.6	49.5
$\mathrm{HD19467b}$	94.1	88.5	83.3
HD206893b	84.2	70.9	59.7
HD4113C	89.3	79.7	71.2
HD95086b	40.9	16.7	6.84
HD984b	76.2	58.1	44.2
HIP65426b	53.3	28.4	15.1
$\operatorname{HIP73990b}$	100.	79.6	63.4
$\mathrm{HIP74865b}$	74.3	55.2	41.0
m HR2562b	68.3	46.6	31.9
m HR3549b	60.8	37.0	22.5
$\rm HR8799b$	100.	100.	100.
PDS70b	65.7	43.2	28.4
\mathbf{PZTelb}	48.4	23.4	11.3
$\operatorname{BetaPicb}$	22.5	5.06	1.14
KappaAndb	40.8	16.6	6.79
Mean	68.2%	50.4%	39.5%

NOTE. — Note: this table also serves to identify the companions that were considered as part of our primary analysis (those within 100 AU of A0-K8 stars), and is a subset of the objects whose properties are described Table 2.

Prospects for Future Discoveries

- Multiplicity Probabilities -> new LBT program
- JWST will open up discovery space for young Saturn-mass planets in thermal light
- **GMT** and **TMT** will enable searches for **Neptunes and Super-Earths (around select** targets)

Wagner+2019

Mordasini+2009

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION: 2019

5

J

Planet-Star

Projected Separation

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION: 2019

Prospects for Future Discoveries

- Multiplicity Probabilities -> new LBT program
- JWST will open up discovery space for young Saturn-mass planets in thermal light
- **GMT** and **TMT** will enable searches for **Neptunes and Super-Earths (around select** targets)

Wagner+2019

Mordasini+2009

Summary and Conclusions

1) Directly Imaged Planets Have a Similar Mass Function to Inner Planets

2) Many of the known systems may have undetected planets.

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

3) Future, deeper surveys should reveal many more low-mass planets

Bonus Slide: A New Planet Candidate around MWC 758

Wagner+2019, ApJ in press, arxiv:1907.06655

KEVIN WAGNER - GREAT BARRIERS IN PLANET FORMATION 2019

- Positioned at the end of the Southern (primary) arm (Dong+2018)
- No polarized light counterpart (Benisty+2015)
- L' M' = 0.75 -> the source is red, while the rest of the disk is gray
- Most likely separation of 0.6" predicted from spiral rotation speed (Ren et al. 2018) – CC1 is observed at 0.62"
- Mass estimate: 2–5 Jupiter masses -> likely capable of driving spiral arms (Fung&Dong 2015)
- Forward modeling -> would likely have detected the Reggiani+2018 candidate interior to the spiral arms

Extra Slides

Evolutionary Models: Initial Conditions and Cooling Curves

Checking Model Assumptions, Exploring Sub-Samples

Wagner, Apai, & Kratter 2019

What about >100 AU companions, and >K8 type hosts?

٠

Wagner+2019, submitted

Mass Functions Re-Normalized to Very Wide-Orbit Companions

TABLE 2 Sub-samples of Companions

ID	$_{\rm SpT}$	Proj. Sep.	#	§
А	A0-K8	$8 - 100 {\rm AU}$	23	3.1 - 3.4
В	A0-M8	$8 - 100 \mathrm{AU}$	28	3.5.1
\mathbf{C}	A0-K8	$\geq 8 \text{ AU}$	37	3.5.2
D	A0-M8	$\geq 8 \text{ AU}$	57	3.5.3
\mathbf{E}	A0-M8	$\geq 100 \text{ AU}$	28	3.5.4
\mathbf{F}	K0-M8	$\geq 8 \text{ AU}$	27	3.5.5

Wagner+2019, submitted

Same plot, normalized to >100 AU companions (E) Over-abundance of planets around earlier-type stars, and with decreasing separation

Primary sample: 23 companions, ≤100 AU projected separation around A0-K8 stars. (wider companions, and later spectral types considered separately)

System 51Erib GJ504b GJ758b HD1160B HD19467b HD206893b HD4113C HD95086b HD984bHIP65426b HIP73990b HIP74865b HR2562b HR3549b HR8799b PDS70b PZTelb BetaPicb KappaAndb

Survival Analysis Feigelson and Nelson 1985

Counting statistics for data involving measurements and upper/lower limits

Example: calculating lifetimes

$$\begin{split} n_j &= \# \{k, \, x_k \geq x'_{(j)}\} , \\ d_j &= \# \{k, \, x_k = x'_{(j)}\} , \end{split}$$

Survival function decreases only at measured values, with the size of the jumps being determined by the relative numbers of measurements and limits above a given t

number greater than the jth element (= nj), and those equal to the jth element (=dj)

Xj = 100 years Nj = number ≥ 100 dj = # who survived to exactly 100

Invert values for the opposite problem, upper limits:

fraction of survivors changes by dj/Nj

 $\delta_i^L = \langle$

 $\widehat{S}(t) = \prod (1 - d_j/n_j)^{\delta'_{(j)}}$, when $t > x'_{(1)}$, $j, x'_{(i)} < t$ when $t \leq x'_{(1)}$.

 $\widehat{F}^{L}(t) = \widehat{S}(M - t)$

Is HR 8799 Rare?

1% occurrence for brown dwarf companions (Metchev & Hillenbrand 2009, Galicher et al. 2016, Vigan et al. 2017, Stone et al. 2018)

=> 10% of stars have one super-Jupiter

- each star has a ~10% potential to form one planet => ~1 in 10,000 will form *four*
- Within 100 pc there are roughly 400,000 stars => 40 such systems but how many will be young?
- Assuming a flat SFR, 1% of stars in a 10 Gyr old galaxy will be <100 Myr old

=> 40% chance of detecting one such system

2009-07-31

20 au

•

Projected Separation vs. Mass

Schlaufman 2018: transiting planets with RV-measured masses and well-characterized stellar hosts

