The Degree of Alignment Between

and

their

Ian Czekala

UC Berkeley July 24th, 2019 NASA Hubble/Sagan Fellow

ApJ accepted arXiv:1906.03269

with **Eugene Chiang**, Sean Andrews, Eric Jensen, Guillermo Torres, David Wilner, Keivan Stassun, Bruce Macintosh

Configurations

Circumstellar disks in binaries

- Truncation of outer disk edges at ~0.2 0.3 semi-major axis
- Reduced planet occurrence; pumped eccentricities

Artymowicz and Lubow 96; Harris+12; Wang+14; Hirsch+17

Circumbinary disks

- A disk or planet orbiting both stars ("P"-type)
- Truncation of inner disk edge at 2 - 3 times the semimajor axis
- Probe an interesting regime of disk evolution: 2x mass but only 2x flux (not 8 - 30x)

Also see posters by Kuruwita, Robert, Hirsh, & Yang.

Kepler's circumbinary wheelhouse: low mutual inclination systems

Transits irregularly: unlikely to be confirmed

*see OGLE-2007-BLG-349L(AB)c, HD 106906

Winn & Fabrycky 15, Li+16, Couetdic+10, Muñoz and Lai 15; Bennett+16

 $\cos\theta = \cos i_{\rm disk} \cos i_{\star} + \sin i_{\rm disk} \sin i_{\star} \cos(\Omega_{\rm disk} - \Omega_{\star})$

Astrometric observations of longer period binaries yield the ascending node (Ω), and the inclination (*i*) so θ can be calculated directly.

Many famous misaligned examples:

GW Ori, HD 142527, R CrA, SR 24N, GG Tau, IRS 43, HD 98800B, ...

What about tighter binaries?

Boden+05, Andrews+14, Di Folco+14, Dutrey+16, Czekala+17, Prato+17, Kraus+09, Mesa+19, Biller+12, Lacour+16, Boehler+17, Price+18, Kennedy19+, Claudi+19

Spectroscopic binaries with disks

Double-lined RV solution yields $M_{
m tot} \sin^3 i_*$

Czekala et al. 16, Czekala et al. 17a

Protoplanetary disk forward model

- Parameterize the disk in 3D: density, temperature, and velocity of gas
- Use radiative transfer (radmc3d) to synthesize channel maps
- Fourier transform and compare to visibilities

Gas forward-modeling

Open source package for dynamical masses https://github.com/iancze/DiskJockey/

Czekala+17b

Double-lined RV solution yields $M_{\rm tot} \sin^3 i_*$ Disk rotation curve: $M_{
m tot}$ Divide to get: i_* Compare to: $i_{\rm disk}$

There are four known SB2s with CB disks, and they all have

 $i_* \approx i_{\mathrm{disk}}$

Prato+02; Rosenfeld+12; Czekala+15a; Czekala+16; Czekala+

Each SB2 system considered individually

V4046 Sgr

$$i_* = 33.4^\circ \pm 1.0^\circ$$

 $i_{\text{disk}} = 33.5^\circ \pm 1.4^\circ$

Huh? But we see $i_* \approx i_{disk}$ for 4 systems. What does this say about the population?

Hierarchical Bayesian modeling

Infer the mutual inclination distribution by fitting all of the systems simultaneously

Disk orientation Binary orientation

Hierarchical Bayesian modeling

Infer the mutual inclination distribution by fitting all of the systems simultaneously

Disk orientation Binary orientation

Hierarchical Bayesian modeling

Infer the mutual inclination distribution by fitting all of the systems simultaneously

Disk orientation Binary orientation

circumbinary disks around spectroscopic binaries (P < 20 days) have low mutual inclinations (68% with θ<3°)

Short period binaries (P < 40 days) and their planets (disks) are *coplanar*

Low mutual inclinations of disks, coupled with the Kepler CB planet sample & detection sensitivity, implies that the CB planet occurrence rate is ~10% (planet periods up to 300 days, 4 - 10 earth radii) consistent with that of single stars

Prato+02; Winn & Fabrycky 15; Rosenfeld+12; Fressin+13; Armstrong+14, Li+16; **Czekala**+15a; **Czekala**+16; Martin+19; **Czekala**+19

Mutual inclinations

Kennedy+12a,12b,15; Czekala+17b; Czekala+19

Theory predicts a CB disk around an eccentric binary will evolve to *either* a coplanar or polar orientation

Foucart & Lai 13, Martin & Lubow 17; Zanazzi & Lai 18, Lubow & Martin 18, Cuello & Guippone19

Formation and alignment mechanisms

- Difficult to directly form binaries within $a < 5 au \rightarrow fragmentation at larger distances + migration$
- Short periods (P = 5 40 days) \rightarrow substantial energy dissipation from orbit/disk interactions, *e* damping
- Long periods (P > 40 days) \rightarrow vestigial random orientation from formation; *e/i* pumping more effective

Tokovinin+06; Foucart and Lai 13; Muñoz and Lai 15; Tokovinin 17; Moe and Kratter+18; Fleming+18, Bate 18

Conclusions

- Circumbinary protoplanetary and debris disks around short-period binaries (P < 40 days) **have low mutual inclinations** (i < 5°)
- Together with the *Kepler* CB planet population, this implies that the circumbinary planet formation rate is **similar to single stars** at these periods
- Binary-disk dissipative interactions shrink and circularize binary orbit, leading to **evolution of a coplanar system**
- CB disks around longer period binaries (P > 40 days) have a **broad range** of mutual inclinations
- **Binary eccentricity** plays a key role in driving large mutual inclinations

Thank you!

Fake data 1:

 $i_* \neq i_{\mathrm{disk}}$

Inferred mutual inclination distribution

Fake data 2:

Inferred mutual inclination distribution

