Irregular variability during star formation: what can we learn about the circumstellar material?

Ágnes Kóspál

Konkoly Observatory, Budapest Max Planck Institute for Astronomy, Heidelberg

Structured Accretion Disks (SACCRED) ERC SG Research Group

Great Barriers in Planet Formation – 2019 July 24

YSOs: traditional variable stars

- Many variable stars with traditional variable star designations (T Tauri, FU Orionis, V1057 Cyg, ...) are YSOs
- Optical (UBVR) photometric monitoring of T Tauri and Herbig stars: virtually all young stars are irregular variables with amplitudes from barely detectable to > 4 mag (Herbst et al. 1994, Herbst & Shevchenko 1999) ;

+2

(Simbad)

(ASAS-SN)

 There are different reasons behind the variability, which cause different variability patterns

Circumstellar environment

(NASA/JPL-Caltech) Kóspál: Variability during star formation

Circumstellar environment

Accretion channels

- Stellar flares

Dark

starspots

Line-of-sight obscuration

(NASA/JPL-Caltech)

Discerning different effects in DQ Tau

Examples for extreme variables

- FU Orionis-type variables (FUors)
- EX Lupi-type variables (EXors)

How can we understand variability?

- Multi-filter photometry; multi-wavelength photometry (Xray, UV, optical, infrared, millimeter, radio)
- Precision photometry (e.g., at the μmag-mmag level): MOST, CoRoT, Kepler/K2, Gaia, TESS, PTF, ZTF, VVV(X), LSST talk by Carlos Contreras Peña
- Spectroscopic monitoring (UV, optical, infrared, millimeter) talk by Connor Robinson
- Spatially resolved imaging or interferometric monitoring (e.g., VLT, Gemini, Subaru, VLT Interferometer)
- Dynamical models to predict time-dependent observables

Variability types of disk-bearing stars

Simultaneous CoRoT (optical) and Spitzer (3.6 and 4.5 μ m) photometric monitoring of disk-bearing stars in NGC 2264

Kóspál: Variability during star formation

Variability types of disk-bearing stars

Kóspál: Variabilly during star formation

(Cody et al. 2014)

Variability types of disk-bearing stars

K2 + Spitzer monitoring in Taurus

- Correlated optical-IR behavior
- Variability amplitude: similar or smaller in the IR
- Different proportion of optically thick/thin emission?

TESS light curves of YSOs

Gaia alerts

- Gaia alert webpage: <u>http://gsaweb.ast.cam.ac.uk/alerts/</u>
- Young outbursting stars among the Gaia alerts:

 Final Gaia data release will contain billions of light curves + colors + spectra!
 Kóspál: Variability during star formation

Young eruptive stars

- Structural changes: V346 Nor
- Mineralogical changes: EX Lup
- Physical/chemical changes: EX Lup

- Powerful accretion outbursts
- Peak bolometric luminosity up to several 100 L_{\odot}
- Outbursts induce important changes in the disk, especially in the terrestrial planetforming zone

Structural changes in V346 Nor

- Changes in the optical depth of the 10 μm silicate feature
- Changes in the line-of-sight extinction
- Density rearrangements between
 outburst and post-outburst (Kóspál et al. in prep.)

- Two Spitzer/IRS spectra during outburst
- One VLT/VISIR spectrum post-outburst

Episodic crystallization and transport

1e-14

1e-20

-1e-21

1e-22

- EX Lup
- The previously
 amorphous 10 μm
 silicate feature became
 crystalline in early 2008
- Colder crystals appeared in late 2008
 - Crystalline features disappeared by 2013

(Ábrahám et al. in prep.)

For gas lines ↔ accretion variability:talks by Marc Audard andConnor Robinson16

Kóspál: Variability during star formation

Chemical modeling for EX Lup

ALMA

0.3

0.2

HCO+

Rcut=110.0au

88660

Frequency, MHz

Expectation: many species may still have non-equilibrium abundances

Magnetic topology in EX Lup

(Kóspál, Donati, et al. in prep.)

Kóspál: Variability during star formation

Magnetic topology in EX Lup

Kóspál: Variability during star formation

CFHT/ESPaDOnS spectropolarimetric observations revealed strong (3 kG) dipole magnetic field

(Kóspál, Donati, et al. in prep.)

Models of magnetospheric accretion 3D MHD models from Romanova, Kulkarni & Lovelace (2008) Stable accretion Unstable accretion 0.04 0.14 0.02 0.12 10 15 TIME 20 25 15 TIME 20 25 Stochastic light curve Periodic light curve

X-ray variability of young eruptive stars

cumulative fraction

0.6

0.4

0.2

0.0

28

29

30

log L_X [erg s]

p < 0.001

31

32

- Appearance of accretion-generated Xray plasma during the outburst of EX Lup
- Statistically speaking, FUors are typically brighter in X-ray than quiescent YSOs

Morphological changes

PV Cep: inner disk rearrangements revealed by dramatic brightness and morphological changes

(Kun et al. 2011)

LRLL 54361: pulsed accretion in a variable protostar in IC 348, light echo seen in the scattered light

(Muzerolle et al. 2013)

Complicated morphologies

- Subaru/HiCIAO H-band observations of the scattered light around FUors
- Possible causes:
 - gravitational instability?
 - past stellar fly-bys?

talk by Nicolás Cuello

(Liu et al. 2016, Takami et al. 2018)

Changing dust distribution

Changing dust distribution

VLTI/PIONIER observations of the disk of the Herbig star HD 169142 (*H* band, 1.65 μm)

2011-2013

The curious case of DG Tau

VLTI/MIDI observations in the N band, $8 - 13 \mu m$

Extreme debris disks (EDDs)

- **Debris dust**: dust grains around main sequence stars have short lifetime, need to be continuously replenished by collisions between planetesimals
- Replenishment may not be continuous, we may be able to discern individual collisions through infrared variability

Interpretation of EDD variability

 sudden production of fragments and vapor condensates due to a hyper-velocity impact between planetesimal-size bodies

• gradual build-up of debris due to collisional evolution

Kóspál: Variability during star formation

Flux decrease:

- rapid evolution of vapor condensates (collisional destruction of grains)
- rapid loss of grains due to radiation pressure (blowout)

More discoveries to be published

• The NEOWISE Reactivation is a treasure trove for finding these events

Kóspál: Variability during star formation

Take-away messages

- Variability is a powerful tool, a 4th dimension to study disks around young stars
- It reveals otherwise unattainable information about the circumstellar matter
- If you ignore it, you are probably making a mistake