HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING

DISCS?

CAN ALL THESE STRUCTURES TELL US SOMETHING ABOUT THE (GAS) DISC MASS?

BENEDETTA VERONESI (UNIMI)

GIUSEPPE LODATO (UNIMI)
ENRICO RAGUSA (UNI-LEICESTER)
GIOVANNI DIPIERRO (EX UNI-LEICESTER)
CASSANDRA HALL (UNI-LEICESTER)
DANIEL PRICE (MONASH-MOCA)

OUR INGREDIENTS

Disc mass composition:
Gas 99% + dust 1% + hosting/forming planets

Gas: H_2 is the most abundant species, but:

- Symmetry of H_2 : rotational lines emission too weak!
- We need tracers: CO-isotopologues in the molecular layer

Dust:

- Disc opacity: dust is probed by continuum (sub-)mm observations
- Grain growth: first stage of planet formation
- Chemistry Ilse Cleeves' talk

Anna Miotello's talk Inga Kamp's talk

Small dust, coupled with gas

Large dust, Decoupled by the gas

From the disc-ussio

HOW MUCH MASS IS THERE IN PROTOPLANETARY DISCS?

Also, are we sure about the dust mass?

Why do protoplanetary disks appear not massive enough to form the known exoplanet population?

C. F. Manara^{1,*}, A. Morbidelli², and T. Guillot²

lower limit estimate: low CO-based gas masses and gas-todust ratios

THE SCALE: DUST & GAS INTERACTION

Stokes number

$$St = t_{fric} \Omega_k = \frac{\rho_p a}{\Sigma_{gas}} \frac{\pi}{2}$$
 at midplane

St < 1 Dust and gas are COUPLED

Palm Cove with sandy water (and crocos)

THE SCALE: DUST & GAS INTERACTION

Stokes number

$$St = t_{fric} \Omega_k = \frac{\rho_p a}{\Sigma_{gas}} \frac{\pi}{2}$$
 at midplane

St < 1

Dust and gas are COUPLED

 $St \gg 1$

Dust and gas are DECOUPLED

market the later was to

Somewhere else with clear water (without crocos)

THE SCALE: DUST & GAS INTERACTION

If the dust grain size is known, depending on the sub-structures we see (spirals, rings...) both in the gas and in the dust, we can infer information on degree of coupling between dust and gas — gas disc mass

SPHERE

....and many others

WORKFLOW

Hydrodynamical and radiative transfer simulations of protoplanetary discs with different Stokes number values (i.e. different disc mass values).

SPH SIMULATIONS

One and two fluids simulations: different degree of coupling

DUST: ONE-FLUID

(Price & Laibe 2015; Ballabio et al. 2018)

GAS

2 embedded PLANETS:

- -sink particles
- migration
- accretion

DUST: TWO-FLUID

(Laibe & Price 2012a,b)

SYNTHETIC IMAGES: SPHERE & ALMA

CAN WE SAY SOMETHING MORE? RESIDUALS

Veronesi et al submitted

CAN WE SAY SOMETHING MORE?

By increasing the Stokes number, the weighted average of the standard deviation decrease ... the system becomes more axi-symmetric

TAKE HOME MESSAGES

- Importance of investigating the dust and gas interaction in order to understand what is the origin of the substructures we are observing
- Stokes number: if grain size is known → information on the amount of gas mass by looking at the degree of coupling between dust and gas

- ALMA synthetic images: from low St (high mass) to high St (low mass) spirals become axi-symmetric structures
- But...we need more **multi-wavelengths observations** for the same source

THANKS FOR THE ATTENTION!

That's all discs!

QUESTIONS?