Effects of dust feedback on evolutions of disks and planets

Kazuhiro Kanagawa (RESCEU, U. Tokyo)

25 July 2019

Great Barriers in planet formation @Palm Cove, Queensland, Australia

© NAOJ

Viscous evolution of a gas disk

Protoplanetary disk

25 July 2019

Gas-dust friction vs. Viscous evolution

$$\begin{split} \Omega_{\rm gas} &= \Omega_{\rm K} \sqrt{1 - \eta} \qquad \eta = -\frac{1}{2} \left(\frac{h}{R}\right)^2 \frac{\partial \ln P}{\partial \ln R} \qquad \eta > 0 \text{ in a usual case} \\ \Omega_{\rm dust} &= \Omega_{\rm K} \end{split}$$

Basic equations

Equations of motions of dust grains and disk gas For the dust grains Gas-dust friction

T_{stop}: stopping time

For the disk gas $\frac{\partial V_{\rm R}}{\partial t} + \left(\vec{V} \cdot \nabla\right) V_{\rm R} - \frac{V_{\phi}^2}{R} = -\frac{c_s^2}{\rho_{\rm g}} \frac{\partial \rho_{\rm g}}{\partial R} - \frac{GM_*}{R^2} + \frac{f_R}{\rho_{\rm g}}$ $\frac{\partial V_{\phi}}{\partial t} + \left(\vec{V} \cdot \nabla\right) V_{\phi} + \frac{V_{\rm R} V_{\phi}}{R} = -\frac{f_{\phi}}{\rho_{\rm g}}$

 f_R , f_{ϕ} : viscous forces acting unit area in radial and azimuthal directions.

Dust and gas velocities in steady state

• Gas velocity

Dipierro+17, Kanagawa+17

$$V_{\rm R}(R,z) = \frac{2St'}{St'^2 + 1} \frac{\rho_{\rm d}}{\rho_{\rm g} + \rho_{\rm d}} \eta V_K + \left(1 - \frac{1}{St'^2 + 1} \frac{\rho_{\rm d}}{\rho_{\rm g} + \rho_{\rm d}}\right) V_{\rm vis},$$

$$V_{\phi}(R,z) = V_K + \left(\frac{1}{St'^2 + 1} \frac{\rho_{\rm d}}{\rho_{\rm g} + \rho_{\rm d}} - 1\right) \eta V_K + \frac{St'}{St'^2 + 1} \frac{\rho_{\rm g}}{\rho_{\rm g} + \rho_{\rm d}} V_{\rm vis},$$

First term: Gas-dust friction, Second term: Gas viscosity $\Omega_{\rm g} = \Omega_{\rm K}\sqrt{1-2\eta}, \qquad St' = \rho_{\rm g}/(\rho_{\rm g}+\rho_{\rm d})St$ $V_{\rm vis} = -\frac{3\nu}{R} \left[p + \frac{2q}{3} + 2\left(\frac{z}{h_{\rm g}}\right)^2 \left(\frac{5q+9}{6}\right) \right] \qquad \eta(R,z) = -\frac{1}{2} \left(\frac{h_{\rm g}}{R}\right)^2 \left(p + q + \frac{q}{2}\frac{z^2}{h_{\rm g}^2}\right) \cdot \qquad St = t_{\rm stop}\Omega_{\rm K}$

Dust velocity

$$v_{\rm R}(R,z) = -\frac{2St'}{St'^2 + 1} \frac{\rho_{\rm g}}{\rho_{\rm g} + \rho_{\rm d}} \eta V_K + \frac{1}{St'^2 + 1} \frac{\rho_{\rm g}}{\rho_{\rm g} + \rho_{\rm d}} V_{\rm vis},$$

$$v_{\phi}(R,z) = V_K + \frac{1}{St'^2 + 1} \frac{\rho_{\rm g}}{\rho_{\rm g} + \rho_{\rm d}} \eta V_K - \frac{St'}{St'^2 + 1} \frac{\rho_{\rm g}}{\rho_{\rm g} + \rho_{\rm d}} V_{\rm vis},$$

25 July 2019

Gas radial velocities in steady state

V_{vis}: Viscous drift velocity, V_K: Keplerian rotation velocity

Dipierro+17, Kanagawa+17

- Inward drift due to gas viscosity slows down due to dust feedback
- When the gas-dust friction term is larger than the viscous term, the gas can move outward against viscous diffusion.

Drift velocities of gas

Solid: Vertical averaged velocity (3D), Dotted: 2D disk (ignore vertical structure)

When can the dust feedback overcome viscosity ?

Above the line, the gas drift velocity is positive (gas move outward)

Hydrodynamic simulations

- 2D (R, ϕ) simulations by FARGO extended into gas-dust fluid.
 - Ignore the vertical structure of the disk (dust setting, etc)
- Commutating domain (6AU < R < 100AU) divided by radially 512 and azimuthally 128 meshes.
- Initial gas density $\Sigma_g = 540 \text{ g/cm}^2 (\text{R}/1\text{AU})^{-1}$.
- Initial dust/gas ratio, $\Sigma_d / \Sigma_g = 0.01$.
- Gas aspect ratio: h/R = 0.028 (R/1AU)^{1/4}
- Constant size of dust grains (3cm)
 - Initially St=0.1 at 10AU
 - no growth, no fragmentation, no planetesimal formation
- Assuming that the disk size is large enough (dust and gas are supplied from the outside during the simulation)

Effect on viscous disk evolution

Kanagawa+2017 ApJ

 $\times 10^{-5}$ 10^{3} $t = 3.2 \times 10^4 \text{ yr}$ $= 3.2 \times 10^4 \text{ yr}$ 6 Gas radial velocity $t = 9.6 \times 10^4 \text{ yr}$ ensitv $t = 9.6 \times 10^4 \text{ yr}$ Gas moves outward.... $t = 1.6 \times 10^5 \text{ yr}$ $t = 1.6 \times 10^5 \text{ yr}$ 5 10^{2} V_R (AU/yr) Σ_g (g/cm²) surface 3 10^{1} 2 Gas Gas density decreases because the gas flows outward 10^{0} 10^{1} 10^{2} 10^{1} 10^{2} R (AU) R(AU)

 $\alpha = 10^{-3}$, $\Sigma_d / \Sigma_g = 0.01$, dust size = 3cm (initially St =0.1 at 10 AU)

Implication for planet formation

But, ... we did not consider

- Size distribution of dust (Dipierro+18)
- 3D simulations (Gonzalez+15,17)
- Dust growth/fragmentation and planetesimal formation (Drążkowska+16, Drążkowska&Alibert 17)

25 July 2019

Dust-to-Gas mass ratio

Dust feedback can change a shape of a planet-induced gap When a large enough protoplanet forms, it would be a giant planet which forms a gap.

Dust size: 3 cm (constant), $\alpha = 4 \times 10^{-3}$, h/R=0.05, M_p/M_{*}=10⁻³

Dust grains are highly accumulated at the outer edge \rightarrow Dust feedback must be effective.

25 July 2019

Effect of dust feedback on migration of a gap-opening planet

Since the gas density at the outer disk decreases due to the dust feedback, torque exerted from the outer disk decreases.

25 July 2019

Effect of dust feedback on migration of a gap-opening planet

Because of weaker negative torque from the outer disk, the planet can migrate outward.

25 July 2019

Summary

- Dust feedback can help to make planets and save them from fast inward migration.
- The gas surface density within 10 AU can decrease due to the dust feedback.
 - Since the dust-to-gas mass ratio decreases, planetesimals and protoplanets could easy to be formed.
 - Since Type I migration is inefficient, the planets which are formed in this region can avoid too fast inward migration.
- Dust feedback reduce the torque exerted from the outer disk
 - The gap-opening planet can migrate outward when the planet is massive (Jupiter size) and viscosity is relatively low.
 - The gap-opening planet can survive for a long time.