Linear and non-linear Multi-Species Streaming Instability

Leonardo Krapp

PhD advisor: Oliver Gressel

In collaboration with: Pablo Benítez-Llambay & Martin Pessah

Youdin & Goodman (2005) and Youdin & Johansen (2007)

Main assumptions:

- Shearing-box framework.
- No vertical stratification.
- One dust-species.

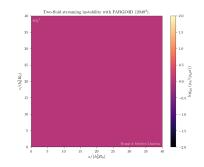
Youdin & Goodman (2005) and Youdin & Johansen (2007)

Main assumptions:

- Shearing-box framework.
- No vertical stratification.
- One dust-species.

Important parameters:

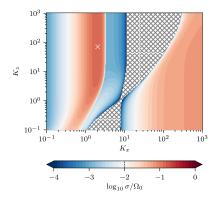
- Stokes number: $T_{\rm s}$.
- Dust-to-gas density ratio: $\epsilon = \frac{\rho_{\rm d}}{\rho_{\rm g}}$.


Youdin & Goodman (2005) and Youdin & Johansen (2007)

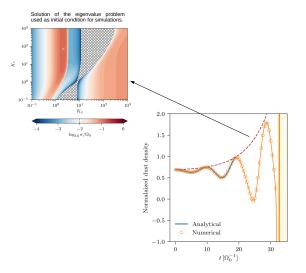
Main assumptions:

- Shearing-box framework.
- No vertical stratification.
- One dust-species.
- Constant background.
- Perturbations: $\delta f \sim e^{k_x x + k_z z \omega t}$

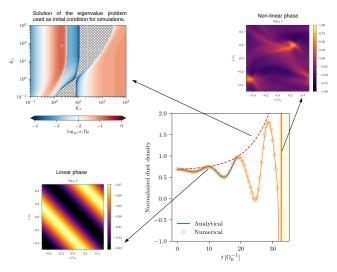
Important parameters:


- Stokes number: $T_{\rm s}$.
- Dust-to-gas density ratio: $\epsilon = \frac{\rho_{\rm d}}{\rho_{\rm g}}$.

FARGO3D simulation based on model BA from Johansen & Youdin (2007); Bai & Stone (2010).


Outcome of the Linear Theory

- Timescale for the instability to fully develop: $T \sim 1/\sigma$.
- Lengthscale of the fastest growing mode: $\lambda = 2\pi/k_{\text{max}}$.

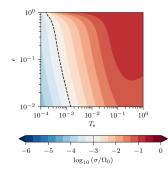


Stability map for the streaming instability with two dust-species.

Outcome of the Linear Theory

Outcome of the Linear Theory

Analytical solution defines a controlled framework for numerical simulations.


Maximum growth rate as a function of the Stokes number and the dust-to-gas density ratio.

• Timescale $T \sim 10 \Omega_0^{-1}$

• Lengthscale $\lambda \lesssim H$

Maximum growth rate as a function of the Stokes number and the dust-to-gas density ratio.

• Timescale $T \sim 10 \Omega_0^{-1}$

• Lengthscale $\lambda \lesssim H$

How are T and λ modified when considering MORE than ONE dust species?

Multispecies Linear Phase

How are T and λ modified when considering MORE than ONE dust species?

THE ASTROPHYSICAL JOURNAL LETTERS, 878:L30 (7pp), 2019 June 20 © 2019. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/2041-8213/ab2596

Streaming Instability for Particle-size Distributions

Leonardo Krapp¹, Pablo Benftez-Llambay¹, ¹0, Oliver Gressel^{1,2}, ¹and Martin E. Pessah¹, ²0 ¹Nels Bohr International Academy, Neb Bohr International Software (Control Competingon O Communic Isorgefork Aut, Pollumby @mki.ku.dk ²Lebniz-Institute für Attracphysik Postsim (AIP), An der Sterwarte 15, D-14482 Postsam, Germany Received 2019 March 29, revision 2019 May 20, accepted 20

Multispecies Linear Phase

How are T and λ modified when considering MORE than ONE dust species?

THE ASTROPHYSICAL JOURNAL LETTERS, 878:L30 (7pp), 2019 June 20 © 2019. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/2041-8213/ab2596

Streaming Instability for Particle-size Distributions

Leonardio Krapp¹ ⁽²⁾ Pablo Benfez-Llambay¹ ⁽²⁾ Oliver Gressel¹¹ ⁽²⁾ ⁽²⁾

• Parameter exploration considering different particle-size distributions with q = 3.5.

Multispecies Linear Phase

How are T and λ modified when considering MORE than ONE dust species?

THE ASTROPHYSICAL JOURNAL LETTERS, 878:L30 (7pp), 2019 June 20 © 2019. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/2041-8213/ab2596

Streaming Instability for Particle-size Distributions

- Parameter exploration considering different particle-size distributions with q = 3.5.
- Same assumptions as Youdin & Goodman (2005).

How are T and λ modified when considering MORE than ONE dust species?

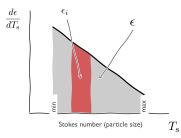
THE ASTROPHYSICAL JOURNAL LETTERS, $878{:}L30$ (7pp), 2019 June 20 \oplus 2019. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/2041-8213/ab2596

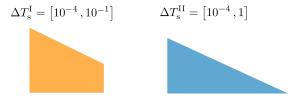
Streaming Instability for Particle-size Distributions

- Parameter exploration considering different particle-size distributions with q = 3.5.
- Same assumptions as Youdin & Goodman (2005).
- Multispecies background solution (Benítez-Llambay et al. 2019).

How are T and λ modified when considering MORE than ONE dust species?


THE ASTROPHYSICAL JOURNAL LETTERS, 878:L30 (7pp), 2019 June 20 © 2019. The American Astronomical Society, All rights reserved. https://doi.org/10.3847/2041-8213/ab2596

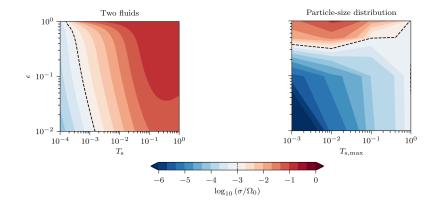
Streaming Instability for Particle-size Distributions

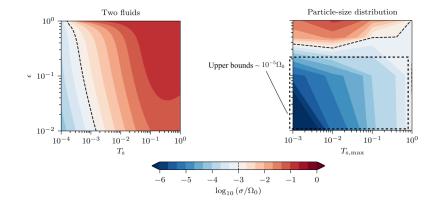

Leonardio Krapp¹ ⁽²⁾ Pablo Benfez-Llambay¹ ⁽²⁾ Oliver Gressel¹¹ ⁽²⁾ ⁽²⁾

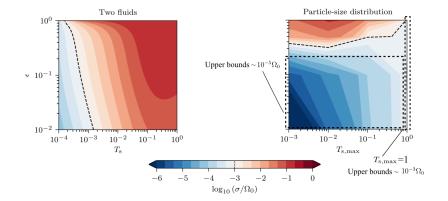
- Parameter exploration considering different particle-size distributions with q = 3.5.
- Same assumptions as Youdin & Goodman (2005).
- Multispecies background solution (Benítez-Llambay et al. 2019).

How many dust species do we need to consider to ensure convergence of the linear phase?

Example: Two distributions with the same mass, $\epsilon = 1$, but different $T_{s,max}$.


Which is the number of species that ensures the convergence of the linear phase?


How many dust species do we need to consider to ensure convergence of the linear phase?


Upper Bounds for the Growth Rate

Upper Bounds for the Growth Rate

Upper Bounds for the Growth Rate

- For distributions with $\epsilon < 0.5$ the multispecies SI may grow on secular time scales.
- Distributions with $T_{s,max} = 1$ show convergence of the linear phase for $\epsilon > 1$.
- For distributions with $\epsilon>0.5$ and $T_{\rm s,max}\lesssim 10^{-2}$ the SI grows faster than the two-fluid case.

Question:

What are the constraints for particle-size distributions in PPDs?

Question:

What are the constraints for particle-size distributions in PPDs?

Take home message:

Unless we can identify mechanisms to produce mono disperse particle populations efficiently, the scope of the streaming instability may be narrowed down profoundly.