

FORMATION OF CLOSE-IN PLANETS IN AN EVOLVING DISC WITH N-BODY SIMULATIONS

Masahiro Ogihara (National Astronomical Observatory of Japan)

Acknowledgments:

Eiichiro Kokubo (NAOJ), Takeru Suzuki (Univ. Tokyo), Alessandro Morbidelli (OCA)

see also Ogihara et al. (2018, A&A)

Barrier in planet formation: Type I migration

Rapid migration may cause several problems

Key questions in this talk

Q1: Is type I migration really problematic in close-in super-Earth formation?

Q2: If so, how can we overcome the migration problem?

Masahiro Ogihara (NAOJ)

Close-in super-Earths

Semi-Major Axis [Astronomical Units (AU)]

Close-in super-Earths

• 2401 planets (confirmed)

Multiple close-in super-Earth systems ($N \ge 2$)

- 432 systems
- 1082 planets (confirmed)

as of Aug. 2017

Formation of super-Earths in a power-law disc (Ogihara, Morbidelli, Guillot 2015)

Eccentricity

Mass ($M_{\rm Earth}$)

 $t_{\rm mig} \sim 10^4 {
m yr}$

rapid type I migration

Formation of super-Earths in a power-law disc

- observation: not in MMRs (mean motion resonances)
- simulation: compact systems in MMRs (←rapid inward migration)

Period ratio (P_{out}/P_{in}) of adjacent pair

Key questions in this talk

Q1: Is type I migration really problematic in close-in super-Earth formation?

Q2: If so, how can we overcome the migration problem?

Masahiro Ogihara (NAOJ)

Yes. Due to rapid inward migration, results of simulations are inconsistent with observed distributions (e.g., period ratio).

Disc evolution including disc winds

disc profiles can be altered from MMSN (r < 1 au)

- flat surface density slope
- decrease in density

type I migration would change

Formation of super-Earths including disc winds 甘油 細眼

initial total mass: $M_{tot} = 40 M_{\oplus}$

(Ogihara, Kokubo, Suzuki, Morbidelli 2018)

Semimajor axis (au)

Planets do not undergo significant migration

Formation of super-Earths including disc winds 目識

Masahiro Ogihara (NAOJ)

(Ogihara, Kokubo, Suzuki, Morbidelli 2018)

- 0.5
- 0 log(M/M⊕) -0.5

-1

-1.5

-2

- **FORMATION PROCESSES**
- slow migration → formation of MMRs
- gas dissipation (~a few Myr)
- instability → giant impacts

not in mean-motion resonances

Formation of super-Earths including disc winds 自識

Observed distribution can be reproduced when the migration is slow

(Ogihara, Kokubo, Suzuki, Morbidelli 2018)

Key questions in this talk PERMIT NUCLEUR

Q1: Is type I migration really problematic in close-in super-Earth formation?

Q2: If so, how can we overcome the migration problem?

Yes. Due to rapid inward migration, results of simulations are inconsistent with observed distributions (e.g., period ratio).

Type I migration can be slowed down if the disc is depleted

Masahiro Ogihara (NAOJ)

- □ N-body simulations of formation of close-in super-Earths
- □ Rapid type I migration results in compact systems in MMRs
- □ If the gas density is depleted in the close-in region (e.g., Suzuki et al. 2016), type I migration can be slowed down
- □ Observed properties of close-in super-Earths can be reproduced (ie, not in MMRs)

