PEBBLE ACCRETION ONTO PLANETS IN TURBULENT DISCS

GIOVANNI PICOGNA - LMU MUNICH

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Collaborators

Willy Kley University of Tübingen

Moritz Stoll

A&A 599, L6 (2017) DOI: 10.1051/0004-6361/201630226 © ESO 2017

Letter to the Editor

Anisotropic hydrodynamic turbulence in accretion disks

Moritz H. R. Stoll¹, Wilhelm Kley¹, and Giovanni Picogna^{1,2}

A&A 604, A28 (2017) DOI: 10.1051/0004-6361/201730668 © ESO 2017

Planet-disc interaction in laminar and turbulent discs

Moritz H. R. Stoll¹, Giovanni Picogna^{1,2}, and Wilhelm Kley¹

A&A 616, A116 (2018) https://doi.org/10.1051/0004-6361/201732523 © ESO 2018

Particle accretion onto planets in discs with hydrodynamic turbulence

Giovanni Picogna^{1,2}, Moritz H. R. Stoll², and Wilhelm Kley²

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

How dead is the dead zone?

02. Dust Evolution in **Turbulent Discs**

OVERVIEW

03. Solid Accretion in **Turbulent Discs**

New Solutions, New Barriers

1. HOW DEAD IS THE DEAD ZONE? HYDRODYNAMIC TURBULENCES

- many mechanisms can generate turbulence in disks (even in the dead zone)
- we modelled the vertical shear instability (VSI)
- and compared the same analysis with a laminar viscous disk

- many mechanisms can generate turbulence in disks (even in the dead zone)
- we modelled the vertical shear instability (VSI)
- and compared the same analysis with a laminar viscous disk

Armitage 2015

• PLUTO code (Mignone+ 2007, 2012)

LUDWIG-

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- 1,000,000 Lagrangian particles representing 10 dust sizes (from sub-mm to km)
- 4 different planetary masses: 5, 10, 30, 100 *M*_⊕
- a set of simulation with VSI active disks (inviscid), and a second one with laminar disks
- locally isothermal equation of state, new runs with radiative transfer, different disc aspect ratio
- no planet migration, no dust back-reaction

NUMERICAL SETUP

alpha

- VSI generate eddies that transport angular momentum
- we can derive an α parameter from the Reynold stresses

$$\alpha(r) = \frac{\langle R_{R,\phi} \rangle_{t,\theta,\phi}}{\langle P \rangle_{t,\theta,\phi}}$$

 $R_{R,\phi} = \rho u_R \delta u_\phi$

 10^{-3}

 10^{-4}

 10^{-5}

EFFECTIVE VISCOSITY

Stoll, Picogna & Kley, 2017

of the RWI vortex

• the strong vertical motion due to the VSI is strongly quenched at the location

Stoll, Picogna & Kley, 2017

- VSI turbulence is strongly anisotropic
- the vertical stress tensor
 is ~650 times stronger
 than the radial one
- it inverts the meridian circulation flow
- can we model this with a simple laminar disc with an α -like parameter?

Stoll, Kley & Picogna, 2017

- VSI turbulence is strongly anisotropic
- the vertical stress tensor
 is ~650 times stronger
 than the radial one
- it inverts the meridian circulation flow
- can we model this with a simple laminar disc with an α -like parameter?

2. DUST EVOLUTION IN TURBULENT DISCS

- very similar particle scale height in VSI and laminar discs with turbulent kicks!
- compatible also with MRI turbulence (Fromang & Nelson, 2009)

H/dH

 10^{-2}

 VSI create rings (and vortices - see e.g. Manger et al. 2018)

LUDWIG-

MAXIMILIANS UNIVERSITÄ

• between 10 and 30 M_{\oplus} the pebble isolation mass is reached (compatible with non turbulent discs - e.g. Bitsch et al., 2018)

 $M_{iso} = 25 f_{fit} M_{\oplus}$

$$f_{fit} = \left[\frac{H/r}{0.05}\right]^3 \left[0.34\left(\frac{\log(\alpha_3)}{\log(\alpha)}\right)^4 + 0.66\right] \left[1 - \frac{\partial \ln(P)}{\partial \log(\alpha)}\right]^4$$

PARTICLE RADIAL DRIFT

time [orbit at 5.2 au]

 VSI create rings (and vortices - see e.g. Manger et al. 2018)

LUDWIG-MAXIMILIANS-

UNIVERSITÄT

• between 10 and 30 M_{\oplus} the pebble isolation mass is reached (compatible with non turbulent discs - e.g. Bitsch et al., 2018)

 $M_{iso} = 25 f_{fit} M_{\oplus}$

$$f_{fit} = \left[\frac{H/r}{0.05}\right]^3 \left[0.34 \left(\frac{\log(\alpha_3)}{\log(\alpha)}\right)^4 + 0.66\right] \left[1 - \frac{\partial \ln(P)/\partial \ln(r) + 2.5}{6}\right]$$

PARTICLE RADIAL DRIFT

Picogna, Stoll & Kley, 2018

3. SOLID ACCRETION IN TURBULENT DISCS

• the solid accretion rate reach a stable state within the simulation

LUDWIG-

AXIMILIANS

- above $10 M_{\oplus}$ pebble accretion is shut off
- there are no striking differences between the VSI and laminar case with turbulent kicks

PEBBLE ISOLATION MASS

Picogna, Stoll & Kley, 2018

particles studied (2-4%)

LUDWIG-

1AXIMILIANS

& Johansen (2014)

• the efficiency of pebble accretion is the lowest between the whole sample of

• the slope of efficiency is compatible with theoretical prediction by Lambrechts

Picogna, Stoll & Kley, 2018

RADIATIVE DISCS

be lowered including more realistic physics

new simulations of laminar radiative discs suggest that the pebble isolation mass can

4. NEW SOLUTIONS, NEW BARRIERS

NEW SOLUTIONS, NEW BARRIERS

- α-disk models can be still useful to describe the evolution of dust in discs, when including turbulent kicks, and it is possible to recreate VSI turbulence assuming an anisotropic α model
- pebble accretion in turbulent 3D discs have a low (2-4%) accretion efficiency but, due to its high flux, it is the main contributor to planet solid accretion
- particle scale height in turbulent discs seem to have a similar fall-off at large Stokes number for different turbulence mechanisms
- VSI can generate rings and vortices

- pebble isolation mass can be close to 10 M_\oplus in radiative discs, posing problems for giant planetary core formation
- turbulence appears everywhere in simulations yet there is no strong evidence of it in observations
- quenching of VSI due to RWI vortices
- dust feedback may quench VSI in the mid plane (wait for Min-Kai's talk)
- interaction of VSI and MRI (wait for Xuening's talk)

GREAT BARRIERS IN PLANET FORMATION PALM COVE 2019

22

THANK YOU FOR YOUR ATTENTION

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Picogna, Stoll & Kley, 2018

