Pebbles to Planetesimals The Role of Pressure Bumps

Jacob B. Simon

University of Colorado Southwest Research Institute

Iowa State University

July 25, 2019 Great Barriers in Planet Formation

Andrews et al. and the DSHARP collaboration

Streaming instability can produce planetesimals

Nesvorny...Simon... (2019), accepted to Nature Astronomy

Streaming instability requires enhanced solid concentration

Yang et al. (2017)

Streaming instability requires enhanced solid concentration

Yang et al. (2017)

Pressure traps can provide that enhanced concentration

Carrera et al. (2015), Yang et al. (2017)

Local simulations of a small, co-rotating disk patch

Zł

- Assume Cartesian geometry
- Add appropriate source terms
- Solve equations of hydro + particles
- Shearing periodic boundaries
- Valid if H/R << 1
- Assume gas is isothermal

Use large aspect ratio to properly capture pressure bump

Use large aspect ratio to properly capture pressure bump

Use large aspect ratio to properly capture pressure bump

But it must be stable to RI and RWI

Adopted from Ono et al. (2016)

But it must be stable to RI and RWI

Different amplitudes

Adopted from Ono et al. (2016)

Warning: all results are preliminary

All amplitudes show planetesimal formation

Pebbles don't need to be trapped to form planetesimals

Particles destroy pressure trap before planetesimal formation (with no reinforcement)

Some reinforcement is necessary to form planetesimals

Some reinforcement is necessary to form planetesimals

At least on a dynamical timescale...

Surprising result: Flat planetesimals

Surprising result: Flat planetesimals

Surprising result: Flat planetesimals

But collapse is halted at the grid scale

But collapse is halted at the grid scale

Following up with PKDGRAV simulations

Nesvorny et al. (2010)

Obviously, an interesting connection

MU69 (aka Ultima Thule)

NASA, JHU APL, SwRI

Take home points (subject to further investigation)

1. Even low amplitude bumps can produce planetesimals

2. But pressure bump must be reinforced (likely not a problem, but needs to be worked out)

3. Flat planetesimals

4. Possible explanation for the formation of MU69!