

Image Credit: University of Copenhagen/Lars Buchhave, W. Garnier, ALMA (ESO/NAOJ/NRAO)

OBSERVING THE CHEMISTRY OF PLANET FORMATION Ilse Cleeves Assistant Professor, University of Virginia July 26, 2019

Edwin Bergin, Karin Oberg, David Wilner, Ryan Loomis, Jane Huang, Sean Andrews, Vivi Guzman

DISK COMPOSITION

The protoplanetary disks' compositions initially set by the parent molecular cloud, some amount of reprocessing as the central star(s) form

~10s of Myr Cloud Protostar

~1-20 Myr

Protoplanetary Disk

> Myr - Gyr

Debris disk, planetary system.

THE SIMPLE PICTURE

Disk composition initially ~molecular-cloud like, now irradiated by the young star

Dust opacity sets the thermal structure and shields the disk from stellar radiation, such as UV and X-rays

DISK GAS COMPOSITION

SNOW LINES AND PLANET (ESIMALS)

Frost-lines/snow-lines set threshold locations (formally temperatures)

Implications: Compositions of the rocky/icy planetesimals set by their formation locations**

** if formed by core-accretion(Pollack+96)

DISK SNOW LINES

To first order, for a "standard" interstellar ice composition: (Reviews of Mumma & Charnley, Boogert)

CO CO₂ H₂O snow line locations depend on condensation temperatures

"Paint on" interstellar ice abundances: H₂O/H ~10⁻⁴ CO₂/H ~ 3 x 10⁻⁵ CO/H ~ 1.3 x 10⁻⁴ (e.g. Boogert + 2015 and Ripple + 2013 for CO)

SNOW LINES AND PLANETS Baseline expectation: freeze-out changes the chemical environment from which comets, asteroids, planets accrete 1.2gas Gas Only H₂ and He gas left grain 1.0 ····· solar

DISK CHEMICAL PROCESSING

Nice picture, but some caveats...

- Winds (removal of light species)
- Gas transport and mixing (dredge up ices from the midplane, or send UV processed material downward)
- Galactic chemical evolution...?
- Ice transport on the surfaces of growing/ fragmenting dust grains
- What are "interstellar abundances?"

Disks are expected to be actively chemically evolving over ~0.1 to Myr+ time scales

DISK CHEMICAL PROCESSING

Nice picture, but some caveats... Disks are actively chemically evolving over ~0.1 to Myr+ time scales

- Winds (removal of light species)
- Galactic chemical evolution...?
 We need measurements!

 Ice transport on the surfaces of growing/fragmenting dust grains

• Gas transport and mixing (dredge up ices from the midplane, or send UV. So what are the typical disk compositions?

MIDPLANE VOLATILES HARDER TO OBSERVE 10 K 100s-1000 K

Zone of freeze-out and poor excitation :(

/b-mm/mm/

gas

DISK GAS OBSERVATIONS WITH ALMA

 $DCO^{+} 3-2$

DISK GAS OBSERVATIONS WITH ALMA

ALMA Cycle 4-6: Spatially resolved spectroscopic survey of TW Hya at 10-15 AU resolution. Mapping key molecules/isotopes.

Co-ls: E. Bergin, K. Oberg, G. Blake, C.Walsh, M. Kama, V. Guzman, E. van Dishoeck, M. Hogerheijde, J. Huang, R. Loomis, D.Wilner, C. Qi

Band 6 Spectral Setting 1		Band 6 Spectral Setting 2:		Band 7 Spectral Setting 4:	
$DCO^{+} 3 - 2$	216.113	$^{13}CS 6 - 5$	277.455	$CN \ 3 - 2$	340.249
DCN $3-2$	217.239	$N_2H^+ 3 - 2$	279.512	$HC^{18}O^{+} 4 - 3$	340.631
$H_2CO 3_{0,3} - 2_{0,2}$	218.476	$DCO^{+} 4 - 3$	288.144	SO $8_8 - 7_7$	340.714
$H_2CO_{2,1} - 2_{2,0}$	218.222	$C^{34}S 6 - 5$	289.209	$^{34}SO_2 5_{3,3} - 4_{2,2}$	342.209
$H_2^{-}CO 3_{2,2}^{-,-} - 2_{2,1}^{-,-}$	218.760	DCN $4-3$	289.645	CS 7 - 6	342.883
$C^{18}O 2 - 1$	219.560	$^{34}SO 6_7 - 5_6$	290.562	$SO_2 5_{3,3} - 4_{2,2}$	351.296
$CO \ 2 - 1$	230.538	$H_2CO 4_{0.4} - 3_{0.3}$	290.623	$SO_2 \ 14_{4,10} - 14_{3,11}$	351.873
$^{13}CS 5 - 4$	231.221	$H_2CO 4_{32} - 3_{31}$	291.380	$H_2^{13}CO 5_{0,5} - 4_{0,4}$	353.812
$N_2D^+ 3 - 2$	231.322	$H_{2}CO 4_{3,1} - 3_{3,0}$	291.384	HCN $4-3$	354.505
				HDCO $10_{1,9} - 10_{0,10}$	355.075
				$H_2^{13}CO 5_{3,3} - 4_{3,2}$	355.191

PI: Cleeves

FROM SPECIFIC MOLECULES TO BULK?

We are limited in our list of observable species. We cannot see total N, C, O, etc. Chemical models (non-equilibrium - what time?) are necessary to "back out" bulk gas compositions from the unobservable species, e.g. N₂.

MOLECULAR "TOOLBOX"

To connect to possible planetesimals, want to measure and ideally map total C/O in a disk and N/O as well. Our simple molecular "toolbox" includes:

Outer Disk

- CO and optically thin isotopologues.
- C₂H, C₃H₂: (Disks: Du et al. 2015, Bergin+2016, Cleeves et al 2018)
- N₂H⁺: N₂ tracer, CO-ice tracer (but also ionization fraction).
- HCO⁺ X-ray chemistry
- HCN: N-tracer, less dependent on disk physics, depends on C/H.
- CS: Sulfur tracer.

Inner Disk (Spitzer, JWST, CRIRES, IGRINS)

 $-H_2O, C_2H_2, HCN, CO, CO_2$

See also McGuire 2018, ApJS

APPROACHES TO RETRIEVING GAS COMPOSITIONS

Forward modeling: Useful in constraining spatial abundance maps, testing out what reactions are important, and what are physical drivers behind the chemistry...

Forward Modeling

INFERRING BULK COMPOSITIONS: MODELING

Much work still needed here.

HIFI Spectroscopic Signatures of Water Vapor in TW Hydrae Disk ESA/NASA/JPL-Caltech/M. Hogerheijde (Leiden Observatory)

EXAMPLE: DISK H₂O WITH HERSCHEL

H_2O (gas) ~ 10⁻⁷ per H UV

- TW Hya, ~40-80x low in H₂O vapor (Hogerheijde+2010, Bergin+2013).
- DM Tau, ≤50x (Bergin et al. 2010 + rev. mass).
- See also Herschel H₂O survey (Du et al. 2017).

EXAMPLE: DISK H₂O WITH HERSCHEL

HIFI Spectroscopic Signatures of Water Vapor in TW Hydrae Disk ESA/NASA/JPL-Caltech/M. Hogerheijde (Leiden Observatory)

- Emission significantly (1 2 orders of magnitude) weaker than Fogel+2011 models predicted.
- The mystery of missing water ice?
 - Is water gone, or is gas gone?
 - Or are the physical structures and models used to interpret the data faulty? (Kamp+2013)
 - Could be that the ices are "coated" preventing desorption?
 - Could it also be that the disk surface dust is just "dry"?

CO-EVOLVING DUST & CHEMISTRY

ALMA: CO ALSO VERY FAINT

Schwarz et al. 2016 modeled the temperature and abundance profile of TW Hya's CO using multi-line ¹³CO and C¹⁸O resolved observations.

See also Yu+2018, Favre+13, Cleeves+15, Megan's talk, and Anna's talk.

WHAT ABOUT NITROGEN? CASE OF IM LUP

IM LUP

- Distance: 160 pc (Gaia)
- Stellar Mass: 1.0 M_{sun} (2.5 R_{sun})
- Age ~ 0.5-1 Myr (Mawet + 2012), late K/early M star.
- Extremely well studied, e.g.,
 Pinte+2008, Panic+2009,
 Cleeves+2015

CONSTRAINING C, O, AND N IN IM LUP

125 175

·81 -54 -27 -2 $C_2H N=3-2,$ multiple HFS

HCN J=3-2 H¹³CN J=3-2 not detected

Cleeves et al. 2018

CONSTRAINING ELEMENTAL ABUNDANCES

Process: fix the physical structure and CO abundance from Cleeves+2016, and vary the remaining oxygen content to fit C_2H , and the nitrogen content to fit HCN.

Also consider a range of cosmic ray ionization rates.

Cleeves et al. 2018

CONSTRAINING C, O, AND N IN IM LUP

RESULTS: Super-solar C/O ratio favored in the upper layers. Implies oxygen in the surface is lower than ISM by a factor of 50x, CO by 20x

> Nitrogen gas essentially interstellar in the surface of the disk, minimal processing

> > Cleeves et al. 2018

WHERE DO THE VOLATILES END UP?

IMPLICATIONS FOR FORMING PLANETS

ISM-like

May also imprint onto stellar spectrum (Kama+2015)

Volatile rich inner disk, poor outer disk

Volatile accretion onto forming planets will have radial and time dependence (see also Morbidelli's talk)

Radially dependent

NEED A LARGER SAMPLE

C₂H observations in a larger sample of disks, covering an age spread

20 ACONTRO DAGO

~1-4 Myr; (DM Tau)

TW Hya ~5-10 Myr (Donaldson+2016)

SUMMARY

- Disk chemistry and physics are intractable.
- With sub-mm gas observations, finding evidence for deviations from interstellar ** chemistry in a handful of bright disks!

But many open questions...

- What disk composition is normal (and when/where)? Still small number statistics... How much was preserved from the molecular cloud? Isotope ratios? Models needed to overcome surface vs. midplane bias •

- Cloud-to-cloud variations? Differing amounts of C, N, O, etc?
- Role of stellar environment, binarity?
- Timescale of planet formation? What chemistry matters?
- If volatile depletion is common, where does it go? Testable with inner disk chemistry with JWST

