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The protoplanetary disks' compositions initially set by the
parent molecular cloud, some amount of reprocessing as
the central star(s) form

~10s of Myr ~100s of kyr ~1-20 Myr > Myr - Gyr



Disk composition initially ~molecular-cloud like,
now irradiated by the young star

ry

Dust opacity sets the thermal structure and shields the
disk from stellar radiation, such as UV and X-rays




DISK GAS COMPOSITION

Increasing H20, HCN;
volatility NH3

L
Dust
Sublimation

"Snow Line"



Frost-lines/snow-lines set threshold locations (formally temperatures)

Implications: Compositions of the rocky/icy
planetesimals set by their formation
locations ™ *

** if formed by core-accretion(Pollack+96)



To first order, for a "standard" interstellar ice composition:
(Reviews of Mumma & Charnley, Boogert)

1

CO CO2 H20

snow line locations depend on
condensation temperatures

"Paint on" interstellar ice
abundances:
H,O/H ~104

CO2/H~3 x 10°
CO/H ~ 1.3 x 104
(e.g. Boogert+2015 and
Ripple + 2013 for CO)




SNOW LINES AND PLANETS

Baseline expectation: freeze-out changes the chemical environment
from which comets, asteroids, planets accrete
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Nice picture, but some caveats...
Disks are expected to be actively chemically evolving over ~0.1 to Myr+ time scales

* Winds (removal of light species)

* Gas transport and mixing (dredge up ices from the midplane, or send UV
processed material downward)

* Galactic chemical
evolution...?

* |ce transport on the
surfaces of growing/
fragmenting dust grains

* What are "interstellar
abundances2"




DISK CHEMICAL PROCESSING
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OBSERVATIONAL WINDOWS

10 K 100s-1000 K
warm atomic/molecular
| lines (FIR) [Ol], H20, CO,
Scattered light, OH HD
optical NIR /

Huge difference

in SNRI!

IR - X-rays!
hot molecular emission of
CO, H20O,HCN, CO,, CH4

C2H2 and more (NIR) ~1012 cm? ~10% cm?3
0
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MIDPLANE VOLATILES HARDER TO OBSERVE

10 K 100s-1000 K

- AT fre’
poor excitatl __

~10¢ cm?-3




H®co* 3-2 x 0.7

100 au

.| %
Schwarz+2016, Oberg+2015, Bergin, Du, Cleeves+2016, Teague+2016, 2018, Huang+2017, Qi/Oberg+2013
(Stay tuned for the MAPS Large Program: Pl: Oberg)




ALMA Cycle 4-6: Spatially resolved spectroscopic survey of TW
Hya at 10-15 AU resolution. Mapping key molecules/isotopes.

Pl: Cleeves

Co-ls: E. Bergin, K. Oberg., G. Blake, C.Walsh, M. Kama., V. Guzman, E.
van Dishoeck, M. Hogerheijde, J. Huang. R. Loomis, D.Wilner, C. Qi
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We are limited in our list of observable species.
We cannot see total N, C, O, etc. Chemical
models (non-equilibrium - what time?) are
necessary to "back out" bulk gas compositions
from the unobservable species, e.g. Na.




To connect to possible planetesimals, want to measure and ideally map total C/O
in a disk and N/O as well. Our simple molecular "toolbox" includes:

Outer Disk
CO and optically thin isotopologues.
C2H, C3H2: (Disks: Du et al. 2015, Bergin+2016, Cleeves et al 2018)
N2H*: N2 tracer, CO-ice tracer (but also ionization fraction).
HCO* - X-ray chemistry
HCN: N-tracer, less dependent on disk physics, depends on C/H.
CS: Sulfur tracer.

Inner Disk (Spitzer, JWST, CRIRES, IGRINS)

H20, C2H2, HCN, CO, CO- .
See also McGuire 2018, ApJS



13CO J=2-]

Forward.-Modeling

Forward modeling: Useful in constraining spatial abundance maps, testing out what
reactions are important, and what are physical drivers behind the chemistry...



INFERRING BULK COMPOSITIONS: MODELING

.
Source
parameters

Disk
model:
Pgas;Pdust

Temperature
structure

(TORUS,
RADMC3D)

Cosmic Ray
Prescription
(Cleeves+2013a)

Monte Carlo UV,
X-rays (Bethell &
Bergin 2011a,b)

External
Radiation Field
(Cleeves+2016)

Radionuclide
ijonization
(Cleeves+2013Db)

Initial
comp. Molecular
data

Chemical (Non-)LTE Model

model radiative T easurement
(Fogel et transfer cots Model-c!ata
al. 2011, (LIME; vis._sample; || ComParison

Cleeves et Brinch ,
al. 2014). +2011) Loomis+2018)

Models are complex!
Many constraints needed.

Much work still needed here.



Py H2O (gas) ~ 107 per H

PARA-WATER

"I —— ORTHO-WATER
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*TW Hya, ~40-80x low in H2O vapor
(Hogerheijde+2010, Bergin+2013).

* DM Tau, <50x (Bergin et al. 2010 + rev. mass).
* See also Herschel H20O survey (Du et al. 2017).

Brightness

HIFI Spectroscopic Signatures of Water Vapor in TW Hydrae Disk
ESA/NASA/JPL-Caltech/M. Hogerheijde (Leiden Observatory)




Emission significantly (1 - 2 orders of magnitude)
weaker than Fogel+2011 models predicted.

The mystery of missing water ice?

*|s water gone, or is gas gone?

PARA-WATER

* Or are the physical structures and models used to
[ S interpret the data faulty? (Kamp+2013)

Brightness

|
: L * Could be that the ices are "coated" preventing
*‘wt “H"( 'm W M WM 'J i desorption?

* Could it also be that the disk surface dust is just
"dry"?

HIFI Spectroscopic Signatures of Water Vapor in TW Hydrae Disk
ESA/NASA/JPL-Caltech/M. Hogerheijde (Leiden Observatory)




Radial
Drift




ALMA: CO ALSO VERY FAINT

7e-0

Schwarz et al. 2016 modeled the 6e-6

temperature and abundance profile 5.6l
of TW Hya's CO using multi-line

13CO and C'80 resolved 8 de-6
observations. s 36-0

2e-0
See also Yu+2018, Favre+13, el )
Cleeves+15, Megan's talk, and >
Anna's talk. 0
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Avenhaus + 2018

IM LUP

< Distance: 160 pc (Gaia)

< Stellar Mass: 1.0 Msun (2.5 Rsun)

<+ Age ~ 0.5-1 Myr (Mawet + 2012), late
K/early M star.

< Extremely well studied, e.g.,
Pinte+2008, Panict+2009,

Cleeves+2015

Widely observed! Our ALMA data:
<+ CO/C18Q/13CO, J=3-2, 2-1, C2H
N=3-2, HCN J=4-3, H13CN J=4-3



CONSTRAINING C, O, AND N IN IM LUP
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Cleeves et al. 2018



Process: fix the physical structure and CO abundance
from Cleeves+2016, and vary the remaining oxygen
content to fit C2H, and the nitrogen content to fit HCN.

Also consider a range of cosmic ray ionization rates.

s

Cleeves et al. 2018



CONSTRAINING C, O, AND N IN IM LUP

_ RESULTS:
= Super-solar C/O ratio favored in the
+ § upper layers. Implies oxygen in the
Y = surface is lower than ISM by a
e 10 . factor of 50x, CO by 20x
| £
U © Nitrogen gas essentially
N (aa) . .
0 interstellar in the surface of
- the disk, minimal processing
1074 @
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Colors: CR ionization rate

Cleeves et al. 2018
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IMPLICATIONS FOR FORMING PLANETS

MCI)’ also imprint Voldtile rich inner
onto stellar spectrum disk, poor outer disk
(Kama+201 5) Radially dependent

Volatile accretion onto forming planets
will have radial and time decfendence
(see also Morbidelli's talk)




NEED A LARGER SAMPLE

C2H observations in a larger sample of disks, covering an age spread

IM Lup ~0.5-1 Myr
(Mawet+2016)

Young

TW Hya ~5-10 Myr
(Donaldson+2016)

—-d1 00 au scale bar



< Disk chemistry and physics are intractable.

< With sub-mm gas observations, finding evidence for deviations from interstellar
chemistry in a handful of bright disks!

But many open questions...

< What disk composition is normal (and when/where)? Still small number statistics...

< How much was preserved from the molecular cloud? Isotope ratios?

< Models needed to overcome surface vs. midplane bias

% Cloud-to-cloud variations? Differing amounts of C, N, O, etc?

< Role of stellar environment, binarity?

< Timescale of planet formation? What chemistry matters?

< If volatile depletion is common, where does it go? Testable with inner disk chemistry

with JWST



