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THE STANDARD CORE ACCRETION MODEL
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PLANETARY MIGRATION

m gravitational interactions between a planet and the gas disk
produce a torque that modifies the orbit of the planet.

m two limit cases: type | migration (low-mass and
intermediate-mass planets that can not open a gap in the
gas disk), and type Il migration (massive planets able to
open a gap in the gas disk, in general gaseous giant planets).




OUR PLANET FORMATION MODEL
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OUR PLANET FORMATION MODEL

Previous torques

Most used type | migration
prescriptions derived from
2D non-isothermal
hydrodynamical simulations
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OUR PLANET FORMATION MODEL

Updated torques

Previous torques

Improved type | migration
prescriptions derived from
3D non-isothermal
hydrodynamical simulations
by Jimenez & Masset (2017):

Most used type | migration
prescriptions derived from
2D non-isothermal
hydrodynamical simulations
by Paardekooper et al. (2011):

F=T 4T
F=T +c Lroc

I_C - I_C,vor + I_C,ent +
rC,temp + rC,vv
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RESULTS
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Migration maps from 2D anb 3D hydrodynamical

simulations

Paardekooper+ 2011

Jiménez & Masset 2017
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Migration maps from 2D anb 3D hydrodynamical

simulations
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Planet formation from both models

30 T T T T =
JM2017
25 - 1
rp=1cm
20 - 4
i)
=
o 15 1
2
©
=
10 | 9
5 i
0 0 0 0 0
0 1 2 3 4 5 6
ap [au]
° ' ' ' " Poott
sl JM2017 i
Fa i
6 =100 m 1
i)
2 5¢ ]
2
s 4r g
=
3l i
o[ i
1L i
0 0 0 0 n .
0 1 2 3 4 5 6
ap [au]




RESULTS

Incorporation of the thermal torque

m Lega et al (2014) found that very close to a low-mass planet
the gas is more cold and dense than it would be if it
behaved adiabatically — netative torque (inward migration)

m Benitez-Llambay et al. (2015) found that the heat released by
a planet due to solid accretion is diffused in the nearby disc
generating two asymmetric hot and low-density lobes —
positive torque (outward migration)

m Recentenly, Masset (2017) developed analytical prescription
for both torques:

lthermal = lcold + rheating




RESULTS

Incorporation of the thermal torque

m Lega et al (2014) found that very close to a low-mass planet
the gas is more cold and dense than it would be if it

New total torque

rtotal - I_typel + I_thermal

Total = L+ Tc (Jimenez & Masset 2017) +
Feold + Theating  (Masset 2017)
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RESULTS

Thermal torque dependence with the solid accretion rate
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Planet formation from both models
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CONCLUSIONS

m We incorporated in our model the updated type | migration
rates from 3D hydrodynamical simulations (Jimenez &
Masset 2017).

m Planet formation tracks could be very differents respect to
the most used type | migrations rates from 2D
hydrodynamical simulations (Paardekooper+ 2011).

m We incorporated for the first time the thermal torque to
study how it impacts in the formation of a planet from early
stages.

m We showed that the heating torque, can change drastically
the planet formation track. If the solid accretion rate is high,
the planet can significantly migrate outward. This
phenomenon could help in the formation and survival of
giant planets at moderate distances from the central star.



