

I am probably

Viscosity?

35, e031

e = 0.0	e = 0.2	e = 0.4	e = 0.6	e = 0.8	
H/R = 0.01					log column density
H/R = 0.02					5
H/R = 0.04					
H/R = 0.06					 6
H/R = 0.08					
H/R = 0.10					7
H/R = 0.12			3		-8

Cavity size depends on viscosity once viscous time is resolved (c.f. Artymowicz & Lubow, 1994).

Cavities form on the viscous time. (c.f. Thun et al. 2017)

We assume an α disc (Shakura & Sunyaev 1973): • $\nu = \alpha c_s H$

Largest cavities (3-4 time are seen around intermed Cavity size is independent

viscous ow, 1994).

Thun et al.

aev 1973):

24, 337 421, 651 396 , 604, A102 5c. Australia,

Cavity size is **independent** of disc inclination, in contrast with predictions from Miranda & Lai (2015).

Disc with low initial inclination warp or break, tending towards a coplanar orbit.

are seen around intermediate mass companions on eccentric orbits.

We run PHANTOM (Price et al. 2018) with 1,000,000 SPH particles.

Largest cavities (3-4 times binary semi-major axis), and prominent horseshoes,

