

ALMA'S VIEW OF THE MID-PLANE IN HERBIG DISCS

James Miley

Great Barriers in Planet Formation Palm Cove, 26th July 2019

Olja Panić (Leeds), Mark Wyatt (Cambridge), Grant Kennedy (Warwick), Tom Haworth (Imperial), Ilaria Pascucci (Arizona), Cathie Clarke (Cambridge), Anita Richards (Manchester), Thorsten Ratzka (Graz)

Image credit: Jon Lomberg

Herbig Stars

- Intermediate mass
- Spectral Type A/B
- Pre-Main Sequence
- Most likely to host giant planets?

Reffert et al. 2015

Herbig Discs

Herbig stars host warmer discs than lower mass T Tauri counterparts

In a warmer disc, key tracers in the disc remain in the gas phase

ALMA observations

- This work uses data from ALMA survey of Herbig discs (Panic et al. in prep)
 - 1.3mm continuum traces cool material i.e. midplane and outer disc
- $^{13}CO(2-1)$ and $C^{18}O(2-1)$ observations in band 6
- ~ 1 arcsecond (~100 au) resolution

Why isotopologues?

- Isotopologues trace gas towards the midplane
- Emission is more likely to be optically thin, meaning it traces density

Disc mass calculations

We calculate a firm *lower limit* to mass in Herbig discs:

• Dust mass Optically thin emission k_{ν} appropriate for mm grains

$$M_{dust} = \frac{F_{\nu} d^2}{k_{\nu} B_{\nu} (T)}$$

Gas mass
Optically thin emission
LTE
ISM ratios

$$M_{gas} = \frac{4\pi}{h\nu_{21}} \frac{F_{21}md^2}{A_{21}x_2}$$

A Tale of Two Discs

HD 100546

B9Ve 109 pc M≈ 2 M_{Sun} 7-10 Myr

HD 141569

B9.5Ve 111 pc ≈ 2 M_{Sun} 5-9 Myr

Actively forming protoplanet(s) ?

- Continuum source and distorted ¹²CO kinematics (Perez+19)
- Direct imaging (Quanz+15, Currie+15)
- Near IR spectroscopy (Brittain+13,14)
- SED Modelling, mid-IR interferometry (Mulders+13, Panic+14)
- ALMA visibility modelling (Walsh+14)

Dust disc:

Dust mass = $1 M_J$

Heavier than most other Herbig dust discs

This is more massive than most discs around low-mass stars $10^{-3} - 10^{-1} M_J$ (Manara+ 2018)

Gas disc:

¹³CO in the disc is optically thick Gas mass from $C^{18}O = 18 M_J$

Heavier than most other Herbig discs: typically $1 - 10 M_J$ (Panic et al. in prep)

ALMA survey of Lupus, discs have a gas disc mass of $< 1M_{J}$ (Miotello et al. 2017)

Gas distribution mirroring scattered light structures?

Extended, low-level C¹⁸O emission is spatially coincident with features previously identified in scattered light

Midplane density analogue to the spirals on the surface?

HST image: Ardila et al. 2007 Miley et al. 2019

A Tale of Two Discs

HD 100546

B9Ve 109 pc M≈ 2 M_{Sun} 7-10 Myr

HD 141569

B9.5Ve 111 pc ≈ 2 M_{Sun} 5-9 Myr

Dust levels of debris disc, but has a significant amount of gas remaining

Is this the youngest `*Hybrid' disc* ? (Pericaud et al. 2017)

VLT/SPHERE Perrot et al. 2016

First detection of a mm ring in this disc!

(≈ 3.6 x 10⁻⁶ M_{sun})


```
<sup>13</sup>CO shows asymmetric distribution
```

Mass estimate: 0.65M_J

2 orders of magnitude larger than that calculated using ¹²CO as a mass tracer

All ¹³CO contained within the scattered light ring at 220au.

Dust mass similar to (gaseous) debris discs

Gas mass similar to (low-mass) protoplanetary discs ≤ 1 M_J

The youngest hybrid disc ?

Require more optically thin gas line detections to determine the origin of the gas: Primordial of secondary ?

e.g. β Pic, Matrà+17

Currie+15 Keck/NIRC2

1a Id 3b 2c 2b

Component C

Currie+16 Keck/NIRC2

Ardila+07 HST/ACS

Konishi+16 HST/STIS

Isotopologues provide a window into the midplane

HD 100546 – a protoplanetary disc? 'planet-hosting'

- Dust mass $\approx 1 M_1$
- Gas mass ≈ 18 M₁
- Optically thick, centrally peaked ¹³CO •

HD 141569 - a 'hybrid' disc ?

- Dust mass $\approx 1.2 M_{Farth}$
- Gas mass $\approx 0.65 M_{\rm H}$
- ¹³CO emission is highly asymmetric and opt. thin

Top take-aways:

- Optically thin continuum and isotopologue observations are powerful tools for characterising the distribution of gas and dust in a disc, particularly warm Herbig discs
- HD100546 has a gas mass of >18M_J lots of planet building material
- HD141569 shows highly asymmetric ¹³CO the youngest hybrid disc?