

ESO: L. Testi S. Facchini C. F. Manara E. Sanchis Melchor Milano: G. Lodato M. Ubeira Gabellini Leiden: L. Trapman G. Rosotti E. F. van Dishoeck MPE : P. Cazzoletti S. Bruderer lfA : J. P. Williams UCB: M. Ansdell M. Tazzari IOA : IPAG: M. de Simone

THE PUZZLE OF

aise masses





# PROTOPLANETARY DISKS



• •



#### GAS VS DUST

Two different behaviors

#### DUST AND GAS NOT EQUALLY DISTRIBUTED

CO EMISSION IS 4 TIMES MORE EXTENDED THAN MM-SIZED DUST EMISSION



Facchini et al. 2019

## **GAS DISTRIBUTION**

disk dynamics and evolution GAS MASS

 $\mathbf{T}$ 

gaseous planet formation





# $H_2$

- most abundant constituent
- no permanent
   electric
   dipole moment:

very weak rotational and vibrational lines



# CO

 second in abundance to H<sub>2</sub>
 very well studied chemistry

readily detectable pure rotational lines at mm wavelengths







the bulk of the gas









Miotello et al., 2014b; 2016

Van Dishoeck & Black, 1988 Visser et al., 2009

#### CAVEATS

carbon abundance relative to H<sub>2</sub> difficult to quantify  $H_2$ 

CO

TW Hya Favre et al., 2013 Kama et al., 2016 Schwarz et al., 2016

#### isotope selective

#### processes

taken into account with physical-chemical disk modeling

~18*(* 

DALI, Bruderer et al. 2012 Miotello et al., 2014b; 2016

Van Dishoeck & Black, 1988 Visser et al., 2009

#### ALMA DISK SURVEYS

 $\begin{array}{l} \label{eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear$ 



Continuum 0.89, 1.2 mm





|    | Sz 83                        | RY Lup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sz 98             | Sz 129                 | Sz 111                | MY Lup            | Sz 71                  |
|----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|-----------------------|-------------------|------------------------|
|    | •                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                 | ۰                      | 0                     | •                 | ۰                      |
|    | Sz 68                        | J16083070-3828268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J16000236-4222145 | Sz 114                 | J16070854-3914075     | J16011549-4152351 | Sz 133                 |
|    | Sz 65                        | 52 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V856 Sco          | Sz 100                 | J15450887-3417333<br> | Sz 123A           | Sz 84                  |
|    | Sz 73                        | J16124373-3815031<br><ul> <li>Image: American State Stat</li></ul> | Sz 1088           | Sz 113                 | Sz 90                 | Sz 74             | J16085324-3914401<br>• |
|    | J16090141-3925119            | Sz 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5z 110            | J15450634-3417378<br>• | Sz 66                 | Sz 72             | Sz 103                 |
|    | Sz 117                       | Sz 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sz 88A            | Sz 131                 | J16081497-3857145     | J16095628-3859518 | J16102955-3922144      |
|    | 5z 130                       | Sz 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J16070384-3911113 | Sz 96                  | Sz 95                 | J16092697-3836269 | Sz 112                 |
|    | J16085373-3914367            | Sz 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J16080017-3902595 | J16075475-3915446      | J16000060-4221567     | 116134410-3736462 | Sz 106                 |
| de | (PI: J. P.<br>ell et al., 20 | Lupus<br>Williams)<br>016;2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J16073773-3921388 | J16085529-3848481<br>• | J16084940-3905393     | J16002612-4153553 | V1192 Sco              |

An

#### **GRID OF MODELS**

Analytic expressions of the line emission as function of the disk mass

 $^{13}CC$ 

<sup>13</sup>CO (3–2) L [Jy km/s pc<sup>2</sup>] 10<sup>6</sup> 10<sup>5</sup> M<sub>tr</sub> 10<sup>4</sup> 10<sup>-5</sup> 10<sup>-4</sup> 10<sup>-3</sup>

10<sup>7</sup>

linear

log

 ${\sf M}_{\sf disk}$   $[{\sf M}_{\odot}]$ 

10<sup>-2</sup>

**10**<sup>-1</sup>

Miotello et al., 2017



#### LOW GAS/DUST OR HIGH C DEPLETION?

sign of disk evolution

physical evolution gas is dissipated M<sub>gas</sub><M<sub>jup</sub> giant planet formation is quick or rare

chemical evolution volatile carbon is locked up in large icy bodies or turned into more complex species

Ansdell et al., 2016 Manara et al., 2016 Miotello et al., 2017 Miotello et al., submitted

#### LOW GAS/DUST OR HIGH C DEPLETION?

sign of disk evolution



Aikawa et al. 1996; Bergin et al. 2014; Du et al. 2015; Eistrup et al. 2016, 2018; Yu et al. 2017a,b; Bosman et al. 2017, 2018; Schwarz et al. 2018; Krijt et al. 2018 chemical evolution volatile carbon is locked up in large icy bodies or turned into more complex species



HD

 Less abundant isotopologue of molecular hydrogen

rotational transition J(1-0) detectable with *Herschel* (PACS)

#### HYDROGEN DEUTERIDE

An alternative to measure disk masses



#### HYDROGEN DEUTERIDE

An alternative to measure disk masses



TW. HYA

#### HYDROGEN DEUTERIDE

An alternative to measure disk masses



2 more sources with detection of HD

Need for HD-based mass measurements in a statistically significant sample

McClure et al., 2016

#### HD: A GOOD MASS TRACER?

Dependence of HD emission on disk masses



#### HD: A GOOD MASS TRACER?

Dependence of HD emission on disk masses



#### knowledge about vertical structure

diminishes the uncertainties on HD-based disk masses

Trapman, Miotello, et al., 2017

#### SENSITIVITY

Detection of a statistically significant number of disks



SPICA

Trapman, Miotello, et al., 2017



Rosenfeld, et al., 2013 Pinte et al., 2018a; 2018b Teague et al., 2018a,b

#### GRAVITATIONAL MASS

Small perturbations in the velocity field due to disk self-gravity would directly probe the disk mass.

#### IS THIS FEASIBLE ?



Rosenfeld, et al., 2013 Pinte et al., 2018a; 2018b Teague et al., 2018a,b

#### GRAVITATIONAL MASS

Small perturbations in the velocity field due to disk self-gravity would directly probe the disk mass.

## IS THIS FEASIBLE ? OTHER IDEAS? See e.g., Powell et al. (2019)



Rosenfeld, et al., 2013 Pinte et al., 2018a; 2018b Teague et al., 2018a,b

#### GRAVITATIONAL MASS

Small perturbations in the velocity field due to disk self-gravity would directly probe the disk mass.

# SEE TALK BY BENEDETTA VERONESI

**CO-based disk masses are low:** gas dispersal or carbon depletion?

Take home

Miotello et al., 2017

2. HD is a promising alternative to derive disk masses Information on the vertical structure needed Trapman, Miotello et al., 2017

# **3.** Direct measurements of the gravitational mass

are needed to calibrate traditional mass determination methods