Collaborators: Dong Lai, Ryan Miranda Also thanks to: Adam Dempsey, Yoram Lithwick, Kaitlin Kratter

Great Barriers in Planet Formation – Palm Cove July 2019

Circumbinary Accretion

Challenges for the formation of close binaries and circumbinary planets

Diego J. Muñoz

CIERA Fellow, Northwestern University

e.g., Kennedy+(2012), Czekala et al (2015,16)

The circumbinary cavity (partially) <u>suppresses</u> <u>accretion</u>

*large disks assumed

*large disks assumed

you first fragment the protostellar disk, then the **binary migrates inward**

*large disks assumed

Circumbinary gas dynamics are fundamental for binary growth, migration and planet formation

Accreting binaries are <u>expected/assumed</u> to evolve toward mass ratios of unity

(Bate & Bonnell 1997; Dotti+ 2010; Nixon+ 2011,13; Dunhill+2014; Young+2015; Hanawa et al. 2010; de Val-Borro+ 2011; Farris+2014; Young & Clarke 2015).

Important for explaining mass ratios and <u>overdensities of "twins</u>" Moe (2016)

Circumbinary gas dynamics are fundamental for binary growth, migration and planet formation

Accreting binaries are <u>expected/assumed</u> to evolve toward mass ratios of unity

(Bate & Bonnell 1997; Dotti+ 2010; Nixon+ 2011,13; Dunhill+2014; Young+2015; Hanawa et al. 2010; de Val-Borro+ 2011; Farris+2014; Young & Clarke 2015).

Protostellar disks are unlikely to form binaries closer than 50 au via gravitational fragmentation

(e.g., Bate+1995; Matzner & Levin 2005; Rafikov 2005; Boley et al. 2006; Whitworth & Stamatellos 2006; Stamatellos & Whitworth 2008; Cossins et al. 2009; Kratter et al. 2010b; Krumholz et al. 2009; Kratter et al. 2010a; Zhu et al. 2012)

Important for explaining mass ratios and <u>overdensities of "twins</u>" Moe (2016)

Circumbinary gas dynamics are fundamental for binary growth, migration and planet formation

Binary growth: equal or unequal masses?

Accreting binaries are expected/assumed to evolve toward mass ratios of unity

(Bate & Bonnell 1997; Dotti+ 2010; Nixon+ 2011,13; Dunhill+2014; Young+2015; Hanawa et al. 2010; de Val-Borro+ 2011; Farris+2014; Young & Clarke 2015).

Binary migration: <u>coalescence</u> or <u>expansion</u>?

Protostellar disks are unlikely to form binaries closer than 50 au via gravitational fragmentation

(e.g., Bate+1995; Matzner & Levin 2005; Rafikov 2005; Boley et al. 2006; Whitworth & Stamatellos 2006; Stamatellos & Whitworth 2008; Cossins et al. 2009; Kratter et al. 2010b; Krumholz et al. 2009; Kratter et al. 2010a; Zhu et al. 2012)

Circumbinary disk behave differently

Circumbinary <u>disks are eccentric</u>

Miranda, Muñoz & Lai (2017), Ragusa+2018; Price+2018, (also Enrico Ragusa's talk)

which might be critical to planet formation

Paardekooper+(2012); Rafikov (2013); Rafikov & Silsbee (2015)

Secular dynamics of circumbinary disks seldom probed/analyzed in hydro

e.g., Goodchild & Ogilvie (2006), Teyssandier+(2018);

Diego J. Muñoz – Great Barriers in Planet Formation – Palm Cove July 2019

Important for explaining mass ratios and <u>overdensities of "twins</u>" MOE (2016)

Binary accretion is a multiple-timescales problem.

dynamical timescales

a few orbits

$$\tau \sim \frac{1}{\Omega_{\rm b}} \frac{(1+q_{\rm b})^2}{q_{\rm b}} \left(1\right)$$

Moving-tessellation ALE Godunov method AREPO

Springel (2010); Muñoz+(2013,14); Pakmor+(2016)

Circumbinary accretion is not suppressed but modulated.

Binarity is a well-known cause of periodic variability

e.g., talks by Agnes Kospal, Contreras, Robinson

circular

(also MacFadyen+Milisavljevic 2008, Shi+ 2012, Farri+2012)

Long-term accretion reaches a quasi-steady state in circular binaries.

Long-term accretion reaches a quasi-steady state in eccentric binaries.

eccentric

Accretion suffers a "symmetry breaking" in eccentric binaries.

alternating-preferential accretion

(Dunhill+2015; Muñoz & Lai, 2016)

Accretion onto high-mass ratio eccentric binaries is alternating-preferential

Binaries have no issue accreting mass... they also accrete momentum.

l_0 is the angular momentum per unit accreted mass

Diego J. Muñoz – Great Barriers in Planet Formation – Palm Cove July 2019

The first way is the <u>"disk way"</u>

(mass supply rate, boundary condition)

mass and angular momentum **currents (transfer rates)**

Diego J. Muñoz – Great Barriers in Planet Formation – Palm Cove July 2019

The first way is the <u>"disk way"</u>

Accretion disks transport angular momentum outward and advect angular momentum inward

angular momentum conservation

$$\frac{dvective}{E^{term}} \left[Ml - F_{\nu} \right] = 0$$

$$F_{\nu} = -2\pi\nu\Sigma R$$

The first way is the <u>"disk way"</u>

Accretion disks transport angular momentum outward and advect angular momentum inward

angular momentum conservation

in steady state:

$$\frac{\partial}{\partial t} (\Sigma l) + \frac{1}{R} \frac{\partial}{\partial k}$$

$$\dot{Ml} - F_{\nu} = co$$

is the "accretion eigenvalue"

 $F_{\nu} = -2\pi\nu\Sigma R^3 \frac{d\Omega}{dR}$

$mstant \equiv M l_0$

(e.g. Paczynski 1991; Popham & Narayan 1991),

The first way is the <u>"disk way"</u>

Accretion disks transport angular momentum outward and advect angular momentum inward

angular momentum conservation

in steady state:

$$\frac{\partial}{\partial t} (\Sigma l) + \frac{1}{R} \frac{\partial}{\partial k}$$

$$\dot{Ml} - F_{\nu} = co$$

is the "accretion eigenvalue"

$$\dot{M}l_0 = \dot{M}\sqrt{\mathcal{G}M_*R_*}$$

Diego J. Muñoz – Great Barriers in Planet Formation – Palm Cove July 2019

 $F_{\nu} = -2\pi\nu\Sigma R^3 \frac{d\Omega}{dR}$

$nstant \equiv Ml_0$

(e.g. Paczynski 1991; Popham & Narayan 1991),

In simple models with accretion down to the stellar surface

e.g., accretion **boundary layers**

Accretion eigenvalue can be positive

Binary gains angular momentum from the disk

Miranda, Muñoz& Lai (2017); Muñoz, Miranda & Lai (2019), Moody+(2019)

Accretion eigenvalue can be positive

Binary gains angular momentum from the disk

Miranda, Muñoz& Lai (2017); Muñoz, Miranda & Lai (2019), Moody+(2019)

The second way is the <u>"binary way"</u>

A binary exchanges angular momentum with the gas via gravitational torques, accretion and spin-up/down

 $\dot{J_{\rm b}} = \dot{L}_{\rm grav} + \dot{L}_{\rm acc} + \dot{S_1} + \dot{S_2}$

Diego J. Muñoz – Great Barriers in Planet Formation – Palm Cove July 2019

Mass, angular momentum transfer rates onto the binary are quasi-steady.

$$\langle \dot{J_{
m b}}
angle pprox \langle \dot{J_{
m b}}
angle$$

$$rac{\langle \dot{J_{
m b}}
angle}{\langle \dot{M_{
m b}}
angle} \, \epsilon$$

Diego J. Muñoz – Great Barriers in Planet Formation – Palm Cove July 2019

Circular binaries expand if $I_0 > 0.38$

if

Binaries can expand if the transferred angular momentum per unit mass is large enough

$$\frac{\dot{a_b}}{a_b} > 0 \quad \text{if} \quad l_0 > 0.38\Omega_b a_b^2$$

$$\left(\frac{l_0}{l_b} - \frac{3}{8}\right) \frac{\dot{M_b}}{M_b}$$

with
$$l_{\rm b} = \Omega_{\rm b} a_{\rm b}^2$$

Miranda, Muñoz & Lai (2017)

Accreting binaries can expand.

for	diff	fere	ent	bi	n

eb	r_{acc} [a_b]	$\langle \dot{J}_{ m b} angle / \langle \dot{M}_{ m b} \rangle / \langle \dot{M}_{ m b} \dot{M}_{ m b} \dot{M}_{ m b} \dot{M}_{ m b}$	
0	0.02 0.04 0.06	0.68 0.68 0.69	
0.1 0.5 0.6	$\begin{array}{c} 0.02 \\ 0.02 \\ 0.02 \end{array}$	0.43 0.78 0.81	

High-mass ratio accreting binaries **EXPAND**

Muñoz , Miranda, & Lai (2019) Moody, Shi & Stone (2019) Muñoz et al (in prep)

Summary and Conclusions

- steady rate I₀ consistent with transport within the disk: accreting binaries expand
- Circular binaries at different (moderate) mass ratios also expand
- precession. It can happen for unequal mass binaries

"Paradigms" in circumbinary accretion need a reassessment

• Accreting binaries $(q_b \sim 1)$ gain angular momentum at a <u>quasi-</u>

Alternating-preferential accretion can be explained by disk