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We observe these binaries in nature ... Furthermore, they form planets.

Czekala et al (2019)
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e.g., Kennedy+(2012), Czekala et al (2015,16)
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Circumbinary gas dynamics are fundamental for binary growth, migration and planet formation

Binary growth: equal or unequal masses?

Accreting binaries are expected/assumed to evolve toward mass ratios of unity
(Bate & Bonnell 1997; Dotti+ 2010; Nixon+ 2011,13; Dunhill+2014; Young+2015; Hanawa et al. 2010; de Val-Borro+ 2011; Farris+2014; Young & Clarke 2015).

Important for explaining mass ratios and overdensities of “twins” moe (2016)

Diego J. Munoz - Great Barriers in Planet Formation — Palm Cove July 2019



Circumbinary gas dynamics are fundamental for binary growth, migration and planet formation

Binary growth: equal or unequal masses?

Accreting binaries are expected/assumed to evolve toward mass ratios of unity
(Bate & Bonnell 1997; Dotti+ 2010; Nixon+ 2011,13; Dunhill+2014; Young+2015; Hanawa et al. 2010; de Val-Borro+ 2011; Farris+2014; Young & Clarke 2015).

Important for explaining mass ratios and overdensities of “twins” moe (2016)

Binary migration: coalescence or expansion?

Protostellar disks are unlikely to form binaries closer than 50 au via

gravitational fragmentation

(e.g., Bate+1995; Matzner & Levin 2005; Rafikov 2005; Boley et al. 2006; Whitworth & Stamatellos 2006; Stamatellos & Whitworth
2008; Cossins et al. 2009; Kratter et al. 2010b; Krumholz et al. 2009; Kratter et al. 2010a; Zhu et al. 2012)

Diego J. Munoz - Great Barriers in Planet Formation — Palm Cove July 2019



Circumbinary gas dynamics are fundamental for binary growth, migration and planet formation

Binary growth: equal or unequal masses?

Accreting binaries are expected/assumed to evolve toward mass ratios of unity
(Bate & Bonnell 1997; Dotti+ 2010; Nixon+ 2011,13; Dunhill+2014; Young+2015; Hanawa et al. 2010; de Val-Borro+ 2011; Farris+2014; Young & Clarke 2015).

Important for explaining mass ratios and overdensities of “twins” moe (2016)

Binary migration: coalescence or expansion?

Protostellar disks are unlikely to form binaries closer than 50 au via

gravitational fragmentation

(e.g., Bate+1995; Matzner & Levin 2005; Rafikov 2005; Boley et al. 2006; Whitworth & Stamatellos 2006; Stamatellos & Whitworth
2008; Cossins et al. 2009; Kratter et al. 2010b; Krumholz et al. 2009; Kratter et al. 2010a; Zhu et al. 2012)

Circumbinary disk behave differently

Circumbinary disks are eccentric . L8 Ve
okl
Miranda, Munoz & Lai (2017), Ragusa+2018; Price+2018, (also Enrico Ragusa’s talk) = L&V\e& %OT @ "
| ‘.QﬁLLLQ-M y . -'Qu,ﬁ\f\e.we'

which might be critical to planet formation
Paardekooper+(2012); Rafikov (2013); Rafikov & Silsbee (2015)

Secular dynamics of circumbinary disks seldom probed/analyzed in hydro
e.g., Goodchild & Ogilvie (2006), Teyssandier+(2018);
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Binary accretion is a multiple-timescales problem.
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dynamical timescales
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Moving-tessellation
ALE Godunov

method AREPO
Springel (2010);
Munoz+(2013,14);
Pakmor+(2016)




Circumbinary accretion is not suppressed but modulated.

Binarity is a well-known cause of periodic variabilty

e.g., talks by Agnes Kospal, Contreras, Robinson
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Long-term accretion reaches a quasi-steady state In circular binaries.
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Long-term accretion reaches a quasi-steady state in eccentric binaries.
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alternating-preferential accretion  (Dunhill+2015 Mufioz & Lai, 2016)

Accretion suffers a “symmetry breaking” in eccentric binaries.
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Accretion onto high-mass ratio eccentric binaries iIs alternating-preferential
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Binaries can modulate accretion, but not suppress it.

Pulsed accretion on DQ Tau and TWA 3A
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Binaries have no issue accreting mass... they also accrete momentum.
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Angular momentum exchange can be computed Iin two ways.

The first way is the “disk way”

(mass supply rate, boundary condition)

/

7

at each annulus

M(R,1)

].(R,l‘) = Jadv — Jvisc _Jgrav

mass and angular momentum

currents (transfer rates)
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Angular momentum exchange can be computed in two ways.

conservation

J advective “
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The first way is the “disk way”

Accretion disks transport angular momentum outward and

advect angular momentum inward
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Angular momentum exchange can be computed in two ways.

The first way is the “disk way”

Accretion disks transport angular momentum outward and
advect angular momentum inward
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in steady state: Ml — Fl/ —_ C()IlStaIlt — Ml()

lO iS the “accretion Eigenva|UE" (e.g. Paczynski 1991; Popham & Narayan 1991),
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in steady state: M l — C()IlStaIlt — M l()

lO iS the “accretion eigenva|UE" (e.g. Paczynski 1991; Popham & Narayan 1991),

In simple models with accretion down to the stellar surface

; Ml() — M\/QM*R* e.g., accretion

boundary layers
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Accretion eigenvalue can be positive

Binary gains angular momentum from the disk

Miranda, Munoz& Lai (2017); Muhoz, Miranda & Lai (2019), Moody+(2019)
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Angular momentum exchange can be computed Iin two ways.

The second way is the “binary way”

A binary exchanges angular momentum

with the gas via gravitational torques,
accretion and spin-up/down

Jb = Lgrav +Lacc +S1 +‘S;2
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Angular momentum exchange can be computed in two ways.

Mass, angular momentum transfer rates onto the binary are quasi-steady.

(Jp) ~ (J(R,1)) = lo(My)
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Circular binaries expand if /o >0.38

Binaries can expand if the transferred angular momentum per unit mass is
large enough
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Accreting binaries can expand.

for different binary eccentricities

eh  Tacc (jtp>/(Mt;> (dp ) (€p)
lav]  [MoSdpai]  [aM ‘ Myl My /M,
0 002 0.68 5%  -0.004
0.04 0.68 7 2. -0.008
0.06 0.69 -0.025
0.1 0.02 043 2.42
0.5 0.02 0.78 -0.20
0.6 0.02 0.81 -2.34

Munoz, Miranda & Lai (2018)

atwajs F‘OSEELV@.

High-mass ratio accreting binaries EXPAND

Munoz , Miranda, & Lai (2019)
Moody, Shi & Stone (2019)
Munoz et al (in prep)
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Summary and Conclusions

e “Paradigms” Iin circumbinary accretion need a reassessment

e Accreting binaries (gn~17) gain angular momentum at a quasi-
steady rate /o consistent with transport within the disk:
accreting binaries expand

e Circular binaries at different (moderate) mass ratios also
expand

e Alternating-preferential accretion can be explained by disk
precession. It can happen for unequal mass binaries
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