The intense life and fast dispersal of proto-planetary discs astronomers

Giovanni Rosotti Leiden University

Veni, Vidi, Vici

An intense life...

⁻

	Sz 98	Sz 129	5z 111	MY Lup	Sz 71
•	•	•	0	•	•
28268	J16000236-4222145	5z 114	J16070854-3914075	J1601154 9-4 152351	Sz 133
•	🧧	•	/	🥐	-
	V856 Sco	Sz 100	J15450887-3417333	Sz 123A	Sz 84
	•	•	•	•	۰
15031	Sz 1088	Sz 113	Sz 90	Sz 74	J16085324-3914401
	•	•	•	8	•
	5z 110	J15450634-3417378	Sz 66	Sz 72	Sz 103
	•	•	•	•	•
	Sz 88A	Sz 131	J16081497-3857145	J16095628-3859518	J16102955-3922144
	•	•	•	•	•
-	J16070384-3911113	Sz 96	Sz 95	J16092697-3836269	Sz 112
	1	•	•	•	•
	J16080017-3902595	J16075475-3915446	J16000060-4221567	J16134410-3736462	5z 106
ł	•	- **		2	•
21388	J16085529-3848481	J16084940-3905393	J16002612-4153553	V1192 Sco	
	•	•	•		

Discs get larger...

Viscous spreading (if present) "wins" over radial drift

...but they look smaller!

Small grains are invisible – cannot see the whole disc

Current sensitivity

Flux-radius relation 10^{0} Flux [Jy] 10^{-1} 10^{-2} Drift 10^{1} 10² 68 per cent dust radius [au] Rosotti+ (2019b)

Data points to drift-dominated regime: $\alpha \leq 10^{-3}$

Data from Tripathi (2017), Andrews (2018)

An intense life...

Dispersal

Observational constraints

Median disc lifetime: a few Myr

0

Two-timescale behavior

Slow quiet phase (10⁶ yr/5 days), followed by fast dispersal phase (10⁵ yr/24h trip)

Photo-evaporation (thermal winds)

Photo-evaporation Approaches

Local detailed models

Global evolution on secular timescales

Photo-evaporation Approaches

Local detailed models

Global evolution on secular timescales

Classic Photoevaporation model based on EUV (~13.6 eV) radiation

Physics: photoionized gas at disk surface to T ~ 10^4 K, sound speed ~10 km s⁻¹

Where $c_s > v_{esc}$ gas is unbound - escapes as a thermal wind (reminiscent of Parker's wind)

$$r_{escape} = \frac{GM_*}{c_s^2}$$

 $\Sigma \propto
ho c_s$

5-10 AU with this naïve estimate, ~few AU with more sophisticated analysis (Font+ 2004)

Mass loss rate is set by temperature of the flow and density

The key is where the energy comes from

• EUV (ionizing photons): both heating and cooling scale as n^{-2} , giving approximate constant temperature 10⁴ K

Talk L. Woelfer

- FUV (non-ionizing): PDR region
- X-rays: ionize metals

Penetrate deeper

$$\Sigma \propto
ho c_s$$

Drive more vigorous winds even if less effective at heating

X-ray heating: temperatures

Picogna+ 2019

Simple parametrization from detailed static radiative transfer to apply to hydro models

See Wang & Goodman for alternative approach: live, but less accurate, radiative transfer

Hydro-modelling

Owen+ 2010

Critical to derive accurate mass-loss rate

Hydro-static: 10⁻⁹ M_☉/yr Ercolano 2009

Hydro-dynamic: 10⁻⁸ M_O/y Owen+ 2010

Ercolano & Owen 2010; Alexander 2008; Pascucci+ 2009

Photo-evaporation Approaches

Local detailed models

Global evolution on secular timescales

Clarke+ 2001

Inside-out dispersal: reproduces two-timescale behaviour Gap opening stop migrating planets

Talk K. Monsch

Transition discs

Two classes of transition discs?

An intense life...

Dispersal

Debris discs

Dust behaviour

t=36000yr

Inner disc disappears Dust outside piles up in a trap

Alexander & Armitage 2007

Does photo-evaporation trigger the streaming instability? Ercolano, Jennings & GR 2017

Yes, but too little mass is produced to form terrestrial planets FUV photo-evaporation more successful (Carrera+ 2017), but only in the outer disc (~100 AU)

Dust clearing by radiation pressure

Predicts gas-rich debris discs

Discs in binary systems

Companions truncate discs

Andrews+ 2018, DSHARP

How does this feedback on the evolution?

Simulation, Artymowicz & Lubow 1994

Qualitative behaviour **Separation 30au** 10^{6}

Separation 300au

Disc lifetime is affected

Can be used to measure disc lifetime as a function of stellar mass

Effects of the environment

Two mechanisms o-evaporation Encounters

External photo-evaporation

12CO 2-1 Moment-0

RW Aur, Rodriguez+ 2018

Encounters or irradiation?

Winter, Clarke, GR+ 2018 Using external photo-evaporation models from Facchini+ 2016 and Haworth+ 2018

Where did the average star form?

50% (in the solar neighbourhood) in regions affected by external photoevaporation

Thus: The average disc is NOT from Taurus or Lupus b) Reinforces idea that planet formation is fast

Conclusions

- Photo-evaporation is the most established disc dispersal mechanism
- In binaries, either viscous evolution (enhanced by tidal truncation) or photo-evaporation is dominant depending on separation
- In a massive environment, external photo-evaporation always dominates over encounters
- The average star (and planetary system) formed in a region significantly affected by the environment. Planet formation must be really fast!